Given an array A
, we may rotate it by a non-negative integer K
so that the array becomes A[K], A[K+1], A{K+2], ... A[A.length - 1], A[0], A[1], ..., A[K-1]
. Afterward, any entries that are less than or equal to their index are worth 1 point.
For example, if we have [2, 4, 1, 3, 0]
, and we rotate by K = 2
, it becomes [1, 3, 0, 2, 4]
. This is worth 3 points because 1 > 0 [no points], 3 > 1 [no points], 0 <= 2 [one point], 2 <= 3 [one point], 4 <= 4 [one point].
Over all possible rotations, return the rotation index K that corresponds to the highest score we could receive. If there are multiple answers, return the smallest such index K.
Example 1: Input: [2, 3, 1, 4, 0] Output: 3 Explanation: Scores for each K are listed below: K = 0, A = [2,3,1,4,0], score 2 K = 1, A = [3,1,4,0,2], score 3 K = 2, A = [1,4,0,2,3], score 3 K = 3, A = [4,0,2,3,1], score 4 K = 4, A = [0,2,3,1,4], score 3
So we should choose K = 3, which has the highest score.
Example 2: Input: [1, 3, 0, 2, 4] Output: 0 Explanation: A will always have 3 points no matter how it shifts. So we will choose the smallest K, which is 0.
Note:
A
will have length at most20000
.A[i]
will be in the range[0, A.length]
.
题意很简单,如果简单想的话,其实有个n^2的解法,就是每个数字都算它能够加分的部分,然后存起来把分数最大的那个拿出来就好了
但对于初始位置,我们也可以知道对于这个数字的移动范围,比如a[5]=2,那么这位置上的2,可以移动5-2=3个位置不会减分。。
这里知道的是,如果移动i个位置,那么范围在i-1的数字将失去得分,变为0。
那么把a[4]放到最后一个位置呢?我们需要判断一下就好了,处理完毕之后,毕竟把a[4]放在最后一位,我们又要计算一次移动范围。
class Solution: def bestRotation(self, A): """ :type A: List[int] :rtype: int """ List= [0 for x in range(len(A)*3)] sum = 0 Len = len(A) for i in range(Len): if i>=A[i]: List[i-A[i]]=List[i-A[i]]+1 #i-ans表示可以移动的范围 sum=sum+1 Max = sum tag = 0 for i in range(1,Len): sum=sum-List[i-1]#每次移动i个元素,那么i-1范围的将无法符合要求 List[i-1] = 0 ans=A[i-1]-(Len-1) if ans<=0: sum=sum+1 List[i-ans]=List[i-ans]+1 if Max<sum: Max=sum tag=i return tag
int bestRotation(int* A, int ASize) { int* rotationPoint = calloc(ASize, sizeof(int)); for (int i = 0; i < ASize; ++i) { int target = A[i]; for (int k = 0; k < ASize; ++k) { if ((i >= k && target <= i - k) || (i < k && target <= ASize - k + i)) rotationPoint[k]++; } } int max = -1, k; for (int i = 0; i < ASize; ++i) { if (rotationPoint[i] > max) { max = rotationPoint[i]; k = i; } } free(rotationPoint); return k; }