• The Fourth Day


    迭代器

      1 迭代器:迭代的工具
      2 1.什么是迭代:指的是一个重复的过程,每次重复称为一次迭代,并且每次重复的结果是下一次重复的初始值
      3 例:
      4     while True:
      5         print('====>''
      6 
      7 l=['a','b','c']
      8 count=0
      9 while count<len(l):
     10     print(l[count])
     11     count+=1
     12 
     13 2.为什么要有迭代器?
     14   对于序列类型:str,list,tuple,可以依赖索引来迭代取值,
     15   但是对于dict,set,文件,python必须为我们提供一种不依赖于索引的迭代取值的方式-》迭代器
     16 
     17 3.可迭代的对象(下列 都是):obj.__iter__
     18 name='egon'
     19 l=[1,2,3]
     20 t=(1,2,3)
     21 d=['name':'egon','age':18,'sex':'male']
     22 s={'a','b','c'}
     23 f=open('a.txt','w',encoding='utf-8')
     24 
     25 name.__iter__
     26 l.__iter__
     27 t.__iter__
     28 d.__iter__
     29 s.__iter__
     30 f.__iter__
     31 
     32 4.迭代器对象(只有文件是):obj.__iter__,obj.__next__
     33 f.__iter__
     34 f.__next__
     35 
     36 总结:
     37 1.可迭代对象不一定是迭代器的对象
     38 2.迭代器对象一定是可迭代器的对象
     39 3.调用obj.__iter__()方法,可迭代对象调用iter就转换成了迭代器对象,文件直接是迭代器对象(对于迭代器对象,执行__iter__得到的仍然是它本身)
     40 
     41 这个例子说明文件执行iter还是迭代器对象,返回值为True
     42 f=open('a.txt','w',encoding='utf-8')
     43 f_iter=f.__iter__().__iter__().__iter__().__iter__()
     44 print(f_iter is f)
     45 
     46 d={'name':'egon','age':18,'sex':'male'}
     47 d_iter=d.__iter__()
     48  print(d_iter.__next__())
     49  print(d_iter.__next__())
     50  print(d_iter.__next__())
     51  print(d_iter.__next__()) #迭代器d_iter没有值了,就会抛出异常StopIteration
     52 
     53 
     54 f=open('a.txt','w',encoding='utf-8')
     55 f_iter=f.__iter__().__iter__().__iter__().__iter__()
     56 
     57 f=open('F:python20期sa.txt','r',encoding='utf-8')
     58 print(f.__next__())
     59 print(f.__next__())
     60 print(f.__next__())
     61 print(f.__next__())
     62 f.close()
     63 
     64 l=['a','b','c']
     65 l_iter=l.__iter__()
     66 print(l_iter.__next__())
     67 print(l_iter.__next__())
     68 print(l_iter.__next__())
     69 
     70 d={'name':'egon','age':18,'sex':'male'}
     71 d_iter=iter(d)  #就相当于d_iter=d.__iter__()和len(obj)=obj__iter__()
     72 
     73 
     74 d={'name':'egon','age':18,'sex':'male'}
     75 d_iter=iter(d)  #就相当于d_iter=d.__iter__
     76 while True:#加上这个是为了取消StopIteration报错
     77     try:#意思是监测这段代码的行为print(next(d_iter)),如果有异常就判断异常是不是StopIteration:,如果是就break
     78         print(next(d_iter))
     79     except StopIteration:
     80         break
     81 print('====>')
     82 print('====>')
     83 print('====>')
     84 print('====>')
     85 
     86 d={'name':'egon','age':18,'sex':'male'}
     87 for k in d:
     88     print(k)
     89 print('====>')
     90 print('====>')
     91 print('====>')
     92 print('====>')
     93 
     94 for循环总结详解(上为实例):
     95 1.调用in后面的obj_iter=obj.__iter__()
     96 2.k=obj_iter.__next__()
     97 3.捕捉到StopIteration异常,结束迭代
     98 
     99 
    100 
    101 
    102 #总结迭代器的优缺点:
    103 #优点:
    104 #1、提供一种统一的、不依赖于索引的取值方式,为for循环的实现提供了依据
    105 #2、迭代器同一时间在内存中只有一个值——》更节省内存,
    106 
    107 #缺点:
    108 #1、只能往后取,并且是一次性的
    109 #2、不能统计值的个数,即长度

     生成器

     1 生成器:只有在函数体内出现yield关键字,那么再执行函数就不会执行函数代码,会得到一个结果,该结果就是生成器
     2 
     3 def func():
     4     print('=====>1')
     5     yield 1
     6     print('=====>2')
     7     yield 2
     8     print('=====>3')
     9     yield 3
    10 
    11 #生成器就是迭代器
    12 # g=func()
    13 ##g.__iter__和g.__next__都有,所以说生成器就是迭代器
    14 #
    15 #next(g)#返回值是======>1
    16 #
    17 #res1=next(g)
    18 # print(res1)
    19 #
    20 #
    21 # res2=next(g)
    22 # print(res2)
    23 #
    24 #
    25 # res3=next(g)
    26 # print(res3)
    27 #yield的功能:
    28 #1、yield为我们提供了一种自定义迭代器对象的方法
    29 #2、yield与return的区别1:yield可以返回多次值 #2:函数暂停与再继续的状态是由yield帮我们保存的
    30 
    31 obj=range(1,1000000000000000000000000000000000000000000000000000000000000000,2)
    32 obj_iter=obj.__iter__()
    33 print(next(obj_iter))
    34 print(next(obj_iter))
    35 print(next(obj_iter))
    36 print(next(obj_iter))
    37 print(next(obj_iter))
    38 
    39 def my_range(start,stop,step=1):#step步长默认为一
    40     while start < stop:
    41         yield start #start=1
    42         start+=step #start=3
    43 
    44 
    45 g=my_range(1,5,2)
    46 print(g)
    47 
    48 print(next(g))
    49 print(next(g))
    50 print(next(g))
    51 print(next(g))
    52 print(next(g))
    53 print(next(g))
    54 print(next(g))
    55 for i in my_range(1,5,2):
    56     print(i)
    57 
    58 小练习::tail -f access.log | grep '404'
    59 import time
    60 def tail(filepath):#文件路径
    61     with open(filepath,'rb') as f:#把光标放到最后
    62         f.seek(0,2)#直接跑到文件末尾去了
    63         while True:#循环去读
    64             line=f.readline()#读一行
    65             if line:#如果有值
    66                 yield line#把这个值返回,让这个值持续运行
    67             else:#如果没有值
    68                 time.sleep(0.05)
    69 
    70 def grep(lines,pattern):#lines,pattern是匹配的东西
    71     for line in lines:
    72         line=line.decode('utf-8')#把数字转成字符串类型
    73         if pattern in line:
    74             yield line#只干过滤的活
    75 
    76 
    77 lines=grep(tail('access.log'),'404')
    78 
    79 for line in lines:
    80     print(line)
    81 
    82 
    83 #了解知识点:yield表达式形式的用法
    84 def eater(name):
    85     print('%s ready to eat' %name)
    86     food_list=[]#加一个列表
    87     while True:
    88         food=yield food_list#food=yield='一盆骨头'#只要写成yield就是生成器了,
    89         food_list.append(food)
    90         print('%s start to eat %s' %(name,food))
    91 
    92 
    93 e=eater('alex')
    94 
    95 #首先初始化:#初始化一次就是next(e)
    96 print(e.send(None)) # 等同于next(e)
    97 #然后e.send:1 从暂停的位置将值传给yield,在用yield给前面的变量 2、与(就是next操作)next一样
    98 print(e.send('一桶泔水'))
    99 print(e.send('一盆骨头'))

     面向编程

    三元表达式

     1 def my_max(x,y):
     2     if x >= y:
     3         return x
     4     else:
     5         return y
     6 
     7 x=10
     8 y=20
     9 
    10 # res=x if x >= y else y
    11 # print(res)
    12 
    13 name=input('>>: ').strip()
    14 
    15 res='Sb' if name == 'alex' else 'NB'
    16 print(res)

    列表推导式和生成器表达式

     1 #1 列表推导式
     2 # l=[]
     3 # for i in range(1,11):
     4 #     res='egg'+str(i)
     5 #     l.append(res)
     6 #
     7 # print(l)
     8 
     9 # l=['egg'+str(i) for i in range(1,11)]
    10 # print(l)
    11 
    12 # l1=['egg'+str(i) for i in range(1,11) if i >= 6]
    13 # print(l1)
    14 
    15 # l1=[]
    16 # for i in range(1,11):
    17 #     if i >= 6:
    18 #         l1.append('egg'+str(i))
    19 #
    20 
    21 #2 生成器表达式
    22 
    23 # g=('egg'+str(i) for i in range(0,1000000000000000000000000000000000))
    24 # print(g)
    25 # print(next(g))
    26 # print(next(g))
    27 # print(next(g))
    28 
    29 
    30 #练习
    31 names=['egon','alex_sb','wupeiqi','yuanhao']
    32 
    33 # names=[name.upper() for name in names]
    34 # print(names)
    35 
    36 # sbs=[name for name in names if name.endswith('sb')]
    37 # print(sbs)
    38 
    39 
    40 # obj=list('abcdef')
    41 # print(obj)
    42 
    43 # print(max([1,2,3,4,5]))
    44 
    45 # g=(i for i in range(10))
    46 # print(max(g))
    47 #
    48 # print(max(g))
    49 
    50 with open('a.txt','r',encoding='utf-8') as f:
    51     # l=[]
    52     # for line in f:
    53     #     # print(len(line))
    54     #     l.append(len(line))
    55 
    56     # g=(len(line) for line in f)
    57     # res=max(g)
    58     # print(res)
    59 
    60     # print(max(len(line) for line in f))
    61 
    62     print(sum(len(line) for line in f))

    递归调用

     1 #递归调用:在调用一个函数的过程中,直接或者间接又调用该函数本身,称之为递归调用
     2 #递归必备的两个阶段:1、递推  2、回溯
     3 
     4 # import sys
     5 # print(sys.getrecursionlimit())
     6 # sys.setrecursionlimit(2000)
     7 # print(sys.getrecursionlimit())
     8 
     9 # def func(n):
    10 #     print('---->',n)
    11 #     func(n+1)
    12 #
    13 # func(0)
    14 
    15 
    16 # def bar():
    17 #     print('from bar')
    18 #     func()
    19 #
    20 # def func():
    21 #     print('from func')
    22 #     bar()
    23 #
    24 # func()
    25 
    26 
    27 # age(5) = age(4) + 2
    28 # age(4) = age(3) + 2
    29 # age(3) = age(2) + 2
    30 # age(2) = age(1) + 2
    31 #
    32 # age(1) = 18
    33 
    34 # age(n)=age(n-1)+2 # n > 1
    35 # age(1) = 18 #n = 1
    36 
    37 
    38 # def age(n):
    39 #     if n == 1:
    40 #         return 18
    41 #     return age(n-1) + 2
    42 #
    43 # res=age(5)
    44 # print(res)
    45 
    46 
    47 # l=[1,[2,[3,[4,[5,[6,[7,]]]]]]]
    48 #
    49 #
    50 # def func(l):
    51 #     for item in l:
    52 #         if type(item) is list:
    53 #             func(item)
    54 #         else:
    55 #             print(item)
    56 
    57 
    58 
    59 # def func():
    60 #     print('===>')
    61 #     func()
    62 #
    63 # func()

    二分法

     1 #了解的知识点
     2 l=[1,2,10,30,33,99,101,200,301,402] #从小到大排列的数字列表
     3 
     4 def binary_search(l,num):
     5     print(l)
     6     if len(l) == 0:
     7         print('not exists')
     8         return
     9     mid_index=len(l) // 2
    10     if num > l[mid_index]:
    11         #往右找
    12         binary_search(l[mid_index+1:],num)
    13 
    14     elif num < l[mid_index]:
    15         #往左找
    16         binary_search(l[0:mid_index],num)
    17     else:
    18         print('find it')
    19 
    20 # binary_search(l,301)
    21 binary_search(l,302)

    匿名函数

     1 # def func(): #func=内存地址
     2 #     print('from func')
     3 #
     4 # func()
     5 # func()
     6 
     7 
     8 # 内存地址
     9 # def my_sum(x,y):
    10 #     return x+y
    11 
    12 # print(lambda x,y:x+y)
    13 # print((lambda x,y:x+y)(1,2))
    14 
    15 # func=lambda x,y:x+y
    16 # # print(func)
    17 # print(func(1,2))
    18 
    19 
    20 #max,min,sorted,map,reduce,filter
    21 # salaries={
    22 #     'egon':3000,
    23 #     'alex':100000000,
    24 #     'wupeiqi':10000,
    25 #     'yuanhao':2000
    26 # }
    27 # print(max(salaries))
    28 
    29 # s='hello'
    30 # l=[1,2,3]
    31 # g=zip(s,l)
    32 # # print(g)
    33 # print(list(g))
    34 
    35 # g=zip(salaries.values(),salaries.keys())
    36 # # print(list(g))
    37 # print(max(g))
    38 
    39 # def func(k):
    40 #     return salaries[k]
    41 
    42 # print(max(salaries,key=func)) #key=func('egon')
    43 
    44 # print(max(salaries,key=lambda k:salaries[k])) #key=func('egon')
    45 # print(min(salaries,key=lambda k:salaries[k])) #key=func('egon')
    46 
    47 
    48 
    49 
    50 
    51 
    52 #sorted
    53 # salaries={
    54 #     'egon':3000,
    55 #     'alex':100000000,
    56 #     'wupeiqi':10000,
    57 #     'yuanhao':2000
    58 # }
    59 # print(sorted(salaries,key=lambda k:salaries[k]))
    60 # print(sorted(salaries,key=lambda k:salaries[k],reverse=True))
    61 
    62 
    63 #map,reduce,filter
    64 # names=['alex','wupeiqi','yuanhao']
    65 # l=[]
    66 # for name in names:
    67 #     res='%s_SB' %name
    68 #     l.append(res)
    69 #
    70 # print(l)
    71 
    72 # g=map(lambda name:'%s_SB' %name,names)
    73 # # print(g)
    74 # print(list(g))
    75 
    76 
    77 # names=['alex_sb','wupeiqi_sb','yuanhao_sb','egon']
    78 # g=filter(lambda x:x.endswith('sb'),names)
    79 # print(g)
    80 # print(list(g))
    81 
    82 
    83 
    84 from functools import reduce
    85 print(reduce(lambda x,y:x+y,range(1,101),100))

    内置函数

      1 #了解
      2 # print(abs(-1))
      3 
      4 # print(all([1,'a','b',0]))
      5 # print(all([]))
      6 
      7 # print(any([None,False,0,1]))
      8 # print(any([]))
      9 
     10 
     11 # print(bin(11))
     12 # print(hex(11))
     13 # print(oct(11))
     14 
     15 # print('xxx'.encode('utf-8'))
     16 # print(bytes('xxx',encoding='utf-8'))
     17 
     18 # print(callable(max))
     19 
     20 # print(chr(65))
     21 # # print(chr(90))
     22 # # print(chr(39))
     23 # print(ord('A'))
     24 # print(ord('@'))
     25 
     26 
     27 # import os
     28 # print(dir(os))
     29 
     30 
     31 # s=set({1,2,3})
     32 # s.add(4)
     33 # print(s)
     34 
     35 # s=frozenset({1,2,3}) #不可变集合
     36 
     37 # print(hash('xxx'))
     38 
     39 # l=[1,2,'a',4]
     40 # print(list(reversed(l)))
     41 
     42 
     43 # s=slice(1,5,2)
     44 # l=['a','b','c','d','e']
     45 #
     46 # # print(l[1:5:2])
     47 # # print(l[1:5:2])
     48 #
     49 # print(l[s])
     50 
     51 
     52 # print(vars() is locals())
     53 
     54 
     55 #面向对象
     56 classmethod
     57 staticmethod
     58 property
     59 
     60 
     61 hasattr
     62 getattr
     63 setattr
     64 delattr
     65 
     66 isinstance
     67 issubclass
     68 
     69 object
     70 
     71 super
     72 
     73 # obj.__dict__() #vars(obj)
     74 
     75 #__import__
     76 # choice=input('>>: ')
     77 # print(choice,type(choice))
     78 #
     79 # # import 'time'
     80 # m=__import__(choice)
     81 # m.sleep(10)
     82 
     83 
     84 
     85 #掌握:
     86 #divmod
     87 # print(divmod(10011,25))
     88 
     89 
     90 #enumerate
     91 # l=['a','b','c']
     92 
     93 # for i in l:
     94 #     print(l.index(i),i,)
     95 
     96 # for i,v in enumerate(l):
     97 #     print(i,v)
     98 
     99 #eval:
    100 # res=eval('[1,2,3]')
    101 # print(res,type(res))
    102 
    103 # res=exec('[1,2,3]')
    104 # print(res)
    105 
    106 #pow
    107 # res=pow(2,3,3) # (2 ** 3 )%3
    108 # print(res)
    109 
    110 #round
    111 # print(round(3.5))
  • 相关阅读:
    堆内存与栈内存
    struts2 ajax 实现方式
    Hibernate 配置派生属性
    高效 jquery 的奥秘
    对于Maven管理的项目制定虚拟目录
    ThreadLocal 笔记
    java Thread.join()
    vi 使用笔记
    浮动闭合方案:clearfix
    熬夜之弊及改善之法
  • 原文地址:https://www.cnblogs.com/yinfutao/p/8119852.html
Copyright © 2020-2023  润新知