• HDU 2602 Bone Collector(经典01背包问题)


    题目链接:

    http://acm.hdu.edu.cn/showproblem.php?pid=2602

    Bone Collector

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 77450    Accepted Submission(s): 32095


    Problem Description
    Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
    The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
     
    Input
    The first line contain a integer T , the number of cases.
    Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
     
    Output
    One integer per line representing the maximum of the total value (this number will be less than 231).
     
    Sample Input
    1
    5 10
    1 2 3 4 5
    5 4 3 2 1
     
    Sample Output
    14
     
    Author
    Teddy
     
    Source
     
    分析:
    经典的01背包问题,每个物品只有两种状态,放还是不放
    dp[i][j]:即前面i件物品放入一个容量为j的背包可以获得的最大价值
    状态转移方程:
    dp[i][j]=dp[i-1][j]  j<w[i]
    dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]     j>=w[i]
     
    注意:
    1.先输入的是物品的价值,而不是重量,题目中好像说反了
    2.背包容量可以为0,物品的重量也可以为0
    关于第2点的测试数据:
    输入
    1
    5 0
    2 4 1 5 1
    0 0 1 0 0
    输出
    12
     
    从前往后遍历二维数组
    #include<bits/stdc++.h>
    using namespace std;
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            int n,c;
            scanf("%d %d",&n,&c);
            int v[n+1],w[n+1];
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&v[i]);
            }
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&w[i]);
            }
            int dp[n+1][c+1];
            memset(dp,0,sizeof(dp));
            for(int i=1;i<=n;i++)
            {
                for(int j=0;j<=c;j++)
                {
                    if(w[i]<=j)//表示第i个物品放入背包中
                    {
                        dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);//第i个物品放入之后,那么前面i-1个物品可能会因为剩余空间不够无法放入
                    }else//表示第i个物品不放入背包
                    {
                        dp[i][j]=dp[i-1][j];//如果第i个物品不放入背包,那么此时的最大价值与放前面i-1个物品的值相等
                    }
                }
            }
            printf("%d
    ",dp[n][c]);
        }
        return 0;
    }
    
    /*
    3
    5 10
    6 3 5 4 6
    2 2 6 5 4
    5 10
    1 2 3 4 5
    5 4 3 2 1
    5 0
    2 4 1 5 1
    0 0 1 0 0
    
    
    15
    14
    12
    */
     从后往前遍历二维数组
    #include<bits/stdc++.h>
    using namespace std;
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            int n,c;
            scanf("%d %d",&n,&c);
            int v[n+1],w[n+1];
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&v[i]);
            }
            for(int i=1;i<=n;i++)
            {
                scanf("%d",&w[i]);
            }
            int dp[n+1][c+1];
            memset(dp,0,sizeof(dp));
            for(int j=0;j<=c;j++)
            {
                if(j>=w[n])
                {
                    dp[n][j]=v[n];
                }else
                {
                    dp[n][j]=0;
                }
            }
            for(int i=n-1;i>=1;i--)
            {
                for(int j=0;j<=c;j++)
                {
                    if(j>=w[i])
                    {
                        dp[i][j]=max(dp[i+1][j],dp[i+1][j-w[i]]+v[i]);
                    }
                    else
                    {
                        dp[i][j]=dp[i+1][j];
                    }
                }
            }
            printf("%d
    ",dp[1][c]);
        }
        return 0;
    }
    
    /*
    3
    5 10
    6 3 5 4 6
    2 2 6 5 4
    5 10
    1 2 3 4 5
    5 4 3 2 1
    5 0
    2 4 1 5 1
    0 0 1 0 0
    
    
    15
    14
    12
    */

    二者其实是一个方法,只是遍历二维数组的方向有点不同

  • 相关阅读:
    谈谈服务限流算法的几种实现
    使用 MongoDB 存储日志数据
    MongoDB存储引擎选择
    下载一线视频
    spring-boot-starter-redis配置详解
    SpringBoot学习笔记(6) SpringBoot数据缓存Cache [Guava和Redis实现]
    Guava 源码分析(Cache 原理)
    分布式链路跟踪 Sleuth 与 Zipkin【Finchley 版】
    Dubbo x Cloud Native 服务架构长文总结(很全)
    区块链使用Java,以太坊 Ethereum, web3j, Spring Boot
  • 原文地址:https://www.cnblogs.com/yinbiao/p/9016365.html
Copyright © 2020-2023  润新知