• HDU1003 最大子段和 线性dp


    题目链接:

    http://acm.hdu.edu.cn/showproblem.php?pid=1003

    Max Sum

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 282195    Accepted Submission(s): 67034


    Problem Description
    Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
     
    Input
    The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
     
    Output
    For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
     
    Sample Input
    2
    5 6 -1 5 4 -7
    7 0 6 -1 1 -6 7 -5
     
    Sample Output
    Case 1: 14 1 4
     
    Case 2: 7 1 6
     
    Author
    Ignatius.L
     
    分析:
    题目的数据很水啊
    输入6 2 7 -9 5 4 3,答案应该是 12 1 6 的结果12 3 6竟然能过!!!!!!!
    ac代码
    #include<stdio.h>
    #include<iostream>
    #include<math.h>
    #include<string.h>
    #include<set>
    #include<map>
    #include<list>
    #include<algorithm>
    using namespace std;
    typedef long long LL;
    int mon1[13]= {0,31,28,31,30,31,30,31,31,30,31,30,31};
    int mon2[13]= {0,31,29,31,30,31,30,31,31,30,31,30,31};
    int dir[4][2]={{0,1},{0,-1},{1,0},{-1,0}};
    #define max_v 100005
    int a[max_v];
    int dp[max_v];
    int main()
    {
        int t;
        cin>>t;
        int c=1;
        while(c<=t)
        {
            int n;
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
                scanf("%d",&a[i]);
            memset(dp,0,sizeof(dp));
            //dp[i] 以第i个数结尾的序列的最大字段和
            dp[1]=a[1];
            for(int i=2;i<=n;i++)
            {
                if(dp[i-1]<0)
                    dp[i]=a[i];
                else
                    dp[i]=dp[i-1]+a[i];
            }
            int index1=1,index2=1;
    
            //找尾 最大dp[i]对应的i就是尾
            int temp=dp[1];
            for(int i=2;i<=n;i++)
            {
                if(temp<dp[i])
                {
                    temp=dp[i];
                    index2=i;
                }
            }
    
            //找头 从尾往前面加,加到和为0就是头
            for(int i=index2,x=0;x!=temp;i--)
            {
                x+=a[i];
                index1=i;
            }
            int sum=0;
            for(int i=index2-1;i>=1;i--)
            {
                sum+=a[i];
                if(sum==0)
                    index1=i;
            }
    
            printf("Case %d:
    ",c);
            printf("%d %d %d
    ",temp,index1,index2);
            if(c<t)
                printf("
    ");
            c++;
        }
        return 0;
    }

     另外一种找头的方法:

    #include<stdio.h>
    #include<iostream>
    #include<math.h>
    #include<string.h>
    #include<set>
    #include<map>
    #include<list>
    #include<algorithm>
    using namespace std;
    typedef long long LL;
    int mon1[13]= {0,31,28,31,30,31,30,31,31,30,31,30,31};
    int mon2[13]= {0,31,29,31,30,31,30,31,31,30,31,30,31};
    int dir[4][2]={{0,1},{0,-1},{1,0},{-1,0}};
    #define max_v 100005
    int a[max_v];
    int dp[max_v];
    int main()
    {
        int t;
        cin>>t;
        int c=1;
        while(c<=t)
        {
            int n;
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
                scanf("%d",&a[i]);
            memset(dp,0,sizeof(dp));
            //dp[i] 以第i个数结尾的序列的最大字段和
            dp[1]=a[1];
            for(int i=2;i<=n;i++)
            {
                if(dp[i-1]<0)
                    dp[i]=a[i];
                else
                    dp[i]=dp[i-1]+a[i];
            }
            int index1=1,index2=1;
    
            //找尾 最大dp[i]对应的i就是尾
            int temp=dp[1];
            for(int i=2;i<=n;i++)
            {
                if(temp<dp[i])
                {
                    temp=dp[i];
                    index2=i;
                }
            }
    
            index1=index2;
            for(int i=index1;i>=1;i--)
            {
                if(dp[i]>=0)
                    index1=i;
                else
                    break;
            }
    
            printf("Case %d:
    ",c);
            printf("%d %d %d
    ",temp,index1,index2);
            if(c<t)
                printf("
    ");
            c++;
        }
        return 0;
    }
  • 相关阅读:
    A1051 Pop Sequence (25 分)
    A1060 Are They Equal (25分)
    A1063 Set Similarity (25分)
    A1037 Magic Coupon (25分)
    Mybatis获取插入记录的自增长ID
    压力测试工具ab的使用
    spring注解
    《spring技术内幕》读书笔记(1)——什么是POJO模式
    用HttpSessionListener统计在线用户或做账号在线人数管理
    (转)注释驱动的 Spring cache 缓存介绍
  • 原文地址:https://www.cnblogs.com/yinbiao/p/8982377.html
Copyright © 2020-2023  润新知