• Redis 内存管理 源码分析


    要想了解redis底层的内存管理是如何进行的,直接看源码绝对是一个很好的选择

    下面是我添加了详细注释的源码,需要注意的是,为了便于源码分析,我把redis为了弥补平台差异的那部分代码删了,只需要知道有这个东西便好

    下面我会贴上两份源码:一份是我自己的,有删减添加了注释的,一部分是原生的,可以做个参考对照

    redis内存管理部分的源码在zmalloc.h文件和zmalloc.c文件

    推荐文章:

    https://www.cnblogs.com/likui360/p/5272443.html

    https://www.cnblogs.com/likui360/p/5272975.html

    http://wiki.jikexueyuan.com/project/redis/memory-data-management.html

    我的源码

    zmalloc.h:

    #ifndef __ZMALLOC_H
    #define __ZMALLOC_H
    
    #define __xstr(s) __str(s)
    #define __str(s) #s
    
    #ifndef ZMALLOC_LIB
    #define ZMALLOC_LIB "libc"
    #endif
    
    /*
      CPU一次性能读取数据的二进制位数称为字长,也就是我们通常所说的32位系统(字长4个字节)、64位系统(字长8个字节)的由来。
    
      所谓的8字节对齐,就是指变量的起始地址是8的倍数。
    
      比如程序运行时(CPU)在读取long型数据的时候,只需要一个总线周期,时间更短,
    
      如果不是8字节对齐的则需要两个总线周期才能读完数据。
    
      本文中我提到的8字节对齐是针对64位系统而言的,如果是32位系统那么就是4字节对齐。
    
      实际上Redis源码中的字节对齐是软编码,而非硬编码。
    
      里面多用sizeof(long)或sizeof(size_t)来表示。
    
      size_t(gcc中其值为long unsigned int)和long的长度是一样的,
    
      long的长度就是计算机的字长。
    
      这样在未来的系统中如果字长(long的大小)不是8个字节了,该段代码依然能保证相应代码可用。
    
    */
    
    /**
    Redis内存模型:
    
    |--------|:代表8个字节大小
    
    
    | 头部   |            实际内存              |
    |--------|--------|--------|--------|--------|
             ^
             |
             ptr:实际返回的地址
    
    上面的内存模型说明了两个问题:
    
    1.内存对齐,都是8个字节的,可以提高cpu响应速度
    
    2.返回的实际地址不包括头部
    
    ps:从左到右内存地址是增加的,默认大端模式
    
    */
    //============ API ==================//
    
    //封装malloc,申请内存
    void *zmalloc(size_t size);
    
    //封装calloc,不再支持按块成倍申请
    void *zcalloc(size_t size);
    
    //封装realloc,内存扩展
    void *zrealloc(void *ptr, size_t size);
    
    //封装free,内存释放,释放时会更新已经使用的内存值,如果在多线程下没有开启安全模式,可能会出现并发错误
    void zfree(void *ptr);
    
    //复制一个字符串,为字符串在堆分配内存
    char *zstrdup(const char *s);
    
    //获取已经使用的内存大小
    size_t zmalloc_used_memory(void);
    
    //设置内存管理为多线程安全模式,设置之后在更新使用内存大小时会使用mutex进行互斥操作
    void zmalloc_enable_thread_safeness(void);
    
    //设置内存异常时的回调函数
    void zmalloc_set_oom_handler(void (*oom_handler)(size_t));
    
    //内存碎片率,驻留在物理内存中的内存/总分配的物理内存
    float zmalloc_get_fragmentation_ratio(size_t rss);
    
    //获取进程可使用的所有内存大小
    size_t zmalloc_get_rss(void);
    
    //获得private_dirty字段
    size_t zmalloc_get_private_dirty(void);
    
    //用这个释放内存时,不会更新使用内存变量的值。
    void zlibc_free(void *ptr);
    
    //获取内内存块总体大小
    size_t zmalloc_size(void *ptr);
    
    #endif /* __ZMALLOC_H */
    
    
    /*
    1.malloc函数和calloc函数的区别
    
      void *malloc(unsigned int size) 在内存中分配一个大小为size的连续空间
    
      void* calloc(unsigned int num,unsigned int size)在内存中分配num个size大小的内存空间
    
      调用malloc后内存中的数据是随机的垃圾数据
    
      调用calloc后内存中的数据是0,因为calloc会自动清零
    
    2.redis为了方便管理内存,在分配一块内存之后,会将内存大小size插入内存头部,size所占内存大小固定
    
    3.Redis允许使用四种内存管理策略:jemalloc,tcmalloc,苹果系统自带的malloc,其他系统自带的malloc
    
      当存在前面三种策略的时候,就选择前面三种,第四种是没有选择的选择
    
      jemalloc是freebsd操作系统自带的内存分配策略,具有速度快,多线程优化的特点
    
      tcmalloc是谷歌开发的,里面集成了很多内存分配的测试工具
    
      这二者的性能不分伯仲
    
    4.Redis很多对象都是共享的,可以节约内存
    
    5.memory aware【内存感知】
    
      Redis能随时高性能的感知所使用的内存总量,实时的获取Redis所使用的内存的大小,从而随时感知内存
    
      实现方式:
          每次分配/释放内存时都更新一个全局的内存使用值
    
    6.内存对齐,比如5位补齐为8位,CPU访问对齐内存仅仅需要一次,访问非对齐内存需要2次,内存对齐可以提高cpu的访问速率
    
    
    */

     

    zmalloc.c:

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    #include <pthread.h>
    #include "zmalloc.h"
    
    //记录已经使用的内存大小
    static size_t used_memory = 0;
    
    //线程安全开关
    static int zmalloc_thread_safe = 0;
    
    //互斥锁,如果开启了线程安全,而编译器又不支持原子操作函数,则需要互斥锁来完成代码互斥操作
    pthread_mutex_t used_memory_mutex = PTHREAD_MUTEX_INITIALIZER;
    
    
    //头部长度
    #define PREFIX_SIZE (sizeof(size_t))
    
    //以线程安全的方式 增加 内存已使用 变量
    #define update_zmalloc_stat_add(__n) do { 
        pthread_mutex_lock(&used_memory_mutex); 
        used_memory += (__n); 
        pthread_mutex_unlock(&used_memory_mutex); 
    } while(0)
    
    //以线程安全的方式 减小 内存已使用 变量
    
    #define update_zmalloc_stat_sub(__n) do { 
        pthread_mutex_lock(&used_memory_mutex); 
        used_memory -= (__n); 
        pthread_mutex_unlock(&used_memory_mutex); 
    } while(0)
    
    
    //增加 已经使用的内存大小,函数内确定是否以线程安全的模式运行
    #define update_zmalloc_stat_alloc(__n) do { 
        size_t _n = (__n); 
        if (_n&(sizeof(long)-1)) _n += sizeof(long)-(_n&(sizeof(long)-1));/*手动内存补齐*/ 
        if (zmalloc_thread_safe) { 
            update_zmalloc_stat_add(_n); 
        } else { 
            used_memory += _n; 
        } 
    } while(0)
    
    //减小 已经使用的内存大小,函数内确定是否以线程安全的模式运行
    #define update_zmalloc_stat_free(__n) do { 
        size_t _n = (__n); 
        if (_n&(sizeof(long)-1)) _n += sizeof(long)-(_n&(sizeof(long)-1)); /*手动内存补齐*/ 
        if (zmalloc_thread_safe) { 
            update_zmalloc_stat_sub(_n); 
        } else { 
            used_memory -= _n; 
        } 
    } while(0)
    
    
    //释放内存,不会更改 已使用内存变量
    void zlibc_free(void *ptr)
    {
        free(ptr);
    }
    
    //打印错误信息并且终止程序 OOM:out of memory
    static void zmalloc_default_oom(size_t size)
    {
        fprintf(stderr, "zmalloc: Out of memory trying to allocate %zu bytes
    ",
                size);
        fflush(stderr);
        abort();
    }
    
    //设置OMM时的回调函数
    static void (*zmalloc_oom_handler)(size_t) = zmalloc_default_oom;
    
    
    //申请size大小的连续内存空间,返回一个指向该空间的指针
    void *zmalloc(size_t size)
    {
        //申请内存空间,预留了PREFIX_SIZE这样一小段空间
        void *ptr = malloc(size+PREFIX_SIZE);
    
        //oom out of memory
        if (!ptr) zmalloc_oom_handler(size); // 如果分配不成功,那么说明内存用尽
    
        //把内存大小存储在头部
        *((size_t*)ptr) = size;
    
        //更新已经使用的内存大小
        update_zmalloc_stat_alloc(size+PREFIX_SIZE);
    
        //返回指向该内存空间实际地址的指针,该指针不指向存放内存大小的内存头部
        return (char*)ptr+PREFIX_SIZE;
    }
    
    //内存申请
    void *zcalloc(size_t size)
    {
        //不再支持按倍数分配内存
        void *ptr = calloc(1, size+PREFIX_SIZE);
    
        //内存分配失败,调用回调函数
        if (!ptr) zmalloc_oom_handler(size);
    
        *((size_t*)ptr) = size;
    
        //更改已经使用的内存大小
        update_zmalloc_stat_alloc(size+PREFIX_SIZE);
    
        //返回指向该内存块的指针
        return (char*)ptr+PREFIX_SIZE;
    }
    
    //指定的内存扩展为size大小,返回扩展后的内存块指针
    void *zrealloc(void *ptr, size_t size)
    {
        void *realptr;
        size_t oldsize;
        void *newptr;
    
        //原内存为空,则直接申请
        if (ptr == NULL) return zmalloc(size);
    
        //实际内存地址指针(包含头部)
        realptr = (char*)ptr-PREFIX_SIZE;
    
        //实际内存大小(包含头部)
        oldsize = *((size_t*)realptr);
    
        //其实zrealloc底层还是封装了realloc,将原内存扩展为size+PREFIX_SIZE大小
        newptr = realloc(realptr,size+PREFIX_SIZE);
    
        //内存扩展失败,进行回调
        if (!newptr) zmalloc_oom_handler(size);
    
        //新内存块大小记录在内存头部
        *((size_t*)newptr) = size;
    
        //修改已使用的内存大小
        update_zmalloc_stat_free(oldsize);
        update_zmalloc_stat_alloc(size);
    
        //返回指针指向扩展后的内存块(不包含头部)
        return (char*)newptr+PREFIX_SIZE;
    }
    
    //返回指定内存块的大小(不包括头部)
    size_t zmalloc_size(void *ptr)
    {
        //指向实际内存块(包含头部)
        void *realptr = (char*)ptr-PREFIX_SIZE;
    
        //实际内存块大小
        size_t size = *((size_t*)realptr);
    
        //内存对齐,比如5位补齐为8位,CPU访问对齐内存仅仅需要一次,访问非对齐内存需要2次,内存对齐可以提高cpu的访问速率
        if (size&(sizeof(long)-1)) size += sizeof(long)-(size&(sizeof(long)-1));
    
        //返回内存大小(不包括头部)
        return size+PREFIX_SIZE;
    }
    
    //释放内存,会更改 已使用的内存变量
    void zfree(void *ptr)
    {
        /*释放内存之前要先获得包含头部内存的实际内存地址,才能避免头部内存的内存泄漏*/
        void *realptr;
        size_t oldsize;
    
        //空内存 直接返回
        if (ptr == NULL) return;
    
        //指向实际内存(包含内存头部)
        realptr = (char*)ptr-PREFIX_SIZE;
    
        //实际内存大小
        oldsize = *((size_t*)realptr);
    
        //更改已使用的内存变量
        update_zmalloc_stat_free(oldsize+PREFIX_SIZE);
    
        //释放
        free(realptr);
    
    }
    
    //复制字符串
    char *zstrdup(const char *s)
    {
        size_t l = strlen(s)+1;
        char *p = zmalloc(l);
        memcpy(p,s,l);
        return p;
    }
    
    //获得已使用的内存空间
    size_t zmalloc_used_memory(void)
    {
        size_t um;
    
        //线程不安全的情况 加锁
        if (zmalloc_thread_safe)
        {
            pthread_mutex_lock(&used_memory_mutex);
            um = used_memory;
            pthread_mutex_unlock(&used_memory_mutex);
    
        }
        else
        {
            um = used_memory;
        }
    
        return um;
    }
    
    //启动线程安全的开关,保证线程安全
    void zmalloc_enable_thread_safeness(void)
    {
        zmalloc_thread_safe = 1;
    }
    
    //设置OMM的回调函数
    void zmalloc_set_oom_handler(void (*oom_handler)(size_t))
    {
        zmalloc_oom_handler = oom_handler;
    }
    
    //下面几个函数深究起来意义不大
    
    //获取进程可使用的所有内存大小
    size_t zmalloc_get_rss(void)
    {
        //很多东西我注释掉了.....
        return zmalloc_used_memory();
    }
    
    //内存碎片率
    float zmalloc_get_fragmentation_ratio(size_t rss)
    {
        return (float)rss/zmalloc_used_memory();
    }
    
    //获得private_dirty字段
    size_t zmalloc_get_private_dirty(void)
    {
        return 0;
    }

     

    原生源码:

    zmalloc.h:

    /* zmalloc - total amount of allocated memory aware version of malloc()
     *
     * Copyright (c) 2009-2010, Salvatore Sanfilippo <antirez at gmail dot com>
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions are met:
     *
     *   * Redistributions of source code must retain the above copyright notice,
     *     this list of conditions and the following disclaimer.
     *   * Redistributions in binary form must reproduce the above copyright
     *     notice, this list of conditions and the following disclaimer in the
     *     documentation and/or other materials provided with the distribution.
     *   * Neither the name of Redis nor the names of its contributors may be used
     *     to endorse or promote products derived from this software without
     *     specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     * POSSIBILITY OF SUCH DAMAGE.
     */
    
    #ifndef __ZMALLOC_H
    #define __ZMALLOC_H
    
    /* Double expansion needed for stringification of macro values. */
    #define __xstr(s) __str(s)
    #define __str(s) #s
    
    #if defined(USE_TCMALLOC)
    #define ZMALLOC_LIB ("tcmalloc-" __xstr(TC_VERSION_MAJOR) "." __xstr(TC_VERSION_MINOR))
    #include <google/tcmalloc.h>
    #if (TC_VERSION_MAJOR == 1 && TC_VERSION_MINOR >= 6) || (TC_VERSION_MAJOR > 1)
    #define HAVE_MALLOC_SIZE 1
    #define zmalloc_size(p) tc_malloc_size(p)
    #else
    #error "Newer version of tcmalloc required"
    #endif
    
    #elif defined(USE_JEMALLOC)
    #define ZMALLOC_LIB ("jemalloc-" __xstr(JEMALLOC_VERSION_MAJOR) "." __xstr(JEMALLOC_VERSION_MINOR) "." __xstr(JEMALLOC_VERSION_BUGFIX))
    #include <jemalloc/jemalloc.h>
    #if (JEMALLOC_VERSION_MAJOR == 2 && JEMALLOC_VERSION_MINOR >= 1) || (JEMALLOC_VERSION_MAJOR > 2)
    #define HAVE_MALLOC_SIZE 1
    #define zmalloc_size(p) je_malloc_usable_size(p)
    #else
    #error "Newer version of jemalloc required"
    #endif
    
    #elif defined(__APPLE__)
    #include <malloc/malloc.h>
    #define HAVE_MALLOC_SIZE 1
    #define zmalloc_size(p) malloc_size(p)
    #endif
    
    #ifndef ZMALLOC_LIB
    #define ZMALLOC_LIB "libc"
    #endif
    
    void *zmalloc(size_t size);
    void *zcalloc(size_t size);
    void *zrealloc(void *ptr, size_t size);
    void zfree(void *ptr);
    char *zstrdup(const char *s);
    size_t zmalloc_used_memory(void);
    void zmalloc_enable_thread_safeness(void);
    void zmalloc_set_oom_handler(void (*oom_handler)(size_t));
    float zmalloc_get_fragmentation_ratio(size_t rss);
    size_t zmalloc_get_rss(void);
    size_t zmalloc_get_private_dirty(void);
    void zlibc_free(void *ptr);
    
    #ifndef HAVE_MALLOC_SIZE
    size_t zmalloc_size(void *ptr);
    #endif
    
    #endif /* __ZMALLOC_H */

    zmalloc.c:

    /* zmalloc - total amount of allocated memory aware version of malloc()
     *
     * Copyright (c) 2009-2010, Salvatore Sanfilippo <antirez at gmail dot com>
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions are met:
     *
     *   * Redistributions of source code must retain the above copyright notice,
     *     this list of conditions and the following disclaimer.
     *   * Redistributions in binary form must reproduce the above copyright
     *     notice, this list of conditions and the following disclaimer in the
     *     documentation and/or other materials provided with the distribution.
     *   * Neither the name of Redis nor the names of its contributors may be used
     *     to endorse or promote products derived from this software without
     *     specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     * POSSIBILITY OF SUCH DAMAGE.
     */
    
    #include <stdio.h>
    #include <stdlib.h>
    
    /* This function provide us access to the original libc free(). This is useful
     * for instance to free results obtained by backtrace_symbols(). We need
     * to define this function before including zmalloc.h that may shadow the
     * free implementation if we use jemalloc or another non standard allocator. */
    void zlibc_free(void *ptr) {
        free(ptr);
    }
    
    #include <string.h>
    #include <pthread.h>
    #include "config.h"
    #include "zmalloc.h"
    
    #ifdef HAVE_MALLOC_SIZE
    #define PREFIX_SIZE (0)
    #else
    #if defined(__sun) || defined(__sparc) || defined(__sparc__)
    #define PREFIX_SIZE (sizeof(long long))
    #else
    #define PREFIX_SIZE (sizeof(size_t))
    #endif
    #endif
    
    /* Explicitly override malloc/free etc when using tcmalloc. */
    #if defined(USE_TCMALLOC)
    #define malloc(size) tc_malloc(size)
    #define calloc(count,size) tc_calloc(count,size)
    #define realloc(ptr,size) tc_realloc(ptr,size)
    #define free(ptr) tc_free(ptr)
    #elif defined(USE_JEMALLOC)
    #define malloc(size) je_malloc(size)
    #define calloc(count,size) je_calloc(count,size)
    #define realloc(ptr,size) je_realloc(ptr,size)
    #define free(ptr) je_free(ptr)
    #endif
    
    #ifdef HAVE_ATOMIC
    #define update_zmalloc_stat_add(__n) __sync_add_and_fetch(&used_memory, (__n))
    #define update_zmalloc_stat_sub(__n) __sync_sub_and_fetch(&used_memory, (__n))
    #else
    #define update_zmalloc_stat_add(__n) do { 
        pthread_mutex_lock(&used_memory_mutex); 
        used_memory += (__n); 
        pthread_mutex_unlock(&used_memory_mutex); 
    } while(0)
    
    #define update_zmalloc_stat_sub(__n) do { 
        pthread_mutex_lock(&used_memory_mutex); 
        used_memory -= (__n); 
        pthread_mutex_unlock(&used_memory_mutex); 
    } while(0)
    
    #endif
    
    #define update_zmalloc_stat_alloc(__n) do { 
        size_t _n = (__n); 
        if (_n&(sizeof(long)-1)) _n += sizeof(long)-(_n&(sizeof(long)-1)); 
        if (zmalloc_thread_safe) { 
            update_zmalloc_stat_add(_n); 
        } else { 
            used_memory += _n; 
        } 
    } while(0)
    
    #define update_zmalloc_stat_free(__n) do { 
        size_t _n = (__n); 
        if (_n&(sizeof(long)-1)) _n += sizeof(long)-(_n&(sizeof(long)-1)); 
        if (zmalloc_thread_safe) { 
            update_zmalloc_stat_sub(_n); 
        } else { 
            used_memory -= _n; 
        } 
    } while(0)
    
    static size_t used_memory = 0;
    static int zmalloc_thread_safe = 0;
    pthread_mutex_t used_memory_mutex = PTHREAD_MUTEX_INITIALIZER;
    
    static void zmalloc_default_oom(size_t size) {
        fprintf(stderr, "zmalloc: Out of memory trying to allocate %zu bytes
    ",
            size);
        fflush(stderr);
        abort();
    }
    
    static void (*zmalloc_oom_handler)(size_t) = zmalloc_default_oom;
    
    void *zmalloc(size_t size) {
        void *ptr = malloc(size+PREFIX_SIZE);
    
        if (!ptr) zmalloc_oom_handler(size);
    #ifdef HAVE_MALLOC_SIZE
        update_zmalloc_stat_alloc(zmalloc_size(ptr));
        return ptr;
    #else
        *((size_t*)ptr) = size;
        update_zmalloc_stat_alloc(size+PREFIX_SIZE);
        return (char*)ptr+PREFIX_SIZE;
    #endif
    }
    
    void *zcalloc(size_t size) {
        void *ptr = calloc(1, size+PREFIX_SIZE);
    
        if (!ptr) zmalloc_oom_handler(size);
    #ifdef HAVE_MALLOC_SIZE
        update_zmalloc_stat_alloc(zmalloc_size(ptr));
        return ptr;
    #else
        *((size_t*)ptr) = size;
        update_zmalloc_stat_alloc(size+PREFIX_SIZE);
        return (char*)ptr+PREFIX_SIZE;
    #endif
    }
    
    void *zrealloc(void *ptr, size_t size) {
    #ifndef HAVE_MALLOC_SIZE
        void *realptr;
    #endif
        size_t oldsize;
        void *newptr;
    
        if (ptr == NULL) return zmalloc(size);
    #ifdef HAVE_MALLOC_SIZE
        oldsize = zmalloc_size(ptr);
        newptr = realloc(ptr,size);
        if (!newptr) zmalloc_oom_handler(size);
    
        update_zmalloc_stat_free(oldsize);
        update_zmalloc_stat_alloc(zmalloc_size(newptr));
        return newptr;
    #else
        realptr = (char*)ptr-PREFIX_SIZE;
        oldsize = *((size_t*)realptr);
        newptr = realloc(realptr,size+PREFIX_SIZE);
        if (!newptr) zmalloc_oom_handler(size);
    
        *((size_t*)newptr) = size;
        update_zmalloc_stat_free(oldsize);
        update_zmalloc_stat_alloc(size);
        return (char*)newptr+PREFIX_SIZE;
    #endif
    }
    
    /* Provide zmalloc_size() for systems where this function is not provided by
     * malloc itself, given that in that case we store a header with this
     * information as the first bytes of every allocation. */
    #ifndef HAVE_MALLOC_SIZE
    size_t zmalloc_size(void *ptr) {
        void *realptr = (char*)ptr-PREFIX_SIZE;
        size_t size = *((size_t*)realptr);
        /* Assume at least that all the allocations are padded at sizeof(long) by
         * the underlying allocator. */
        if (size&(sizeof(long)-1)) size += sizeof(long)-(size&(sizeof(long)-1));
        return size+PREFIX_SIZE;
    }
    #endif
    
    void zfree(void *ptr) {
    #ifndef HAVE_MALLOC_SIZE
        void *realptr;
        size_t oldsize;
    #endif
    
        if (ptr == NULL) return;
    #ifdef HAVE_MALLOC_SIZE
        update_zmalloc_stat_free(zmalloc_size(ptr));
        free(ptr);
    #else
        realptr = (char*)ptr-PREFIX_SIZE;
        oldsize = *((size_t*)realptr);
        update_zmalloc_stat_free(oldsize+PREFIX_SIZE);
        free(realptr);
    #endif
    }
    
    char *zstrdup(const char *s) {
        size_t l = strlen(s)+1;
        char *p = zmalloc(l);
    
        memcpy(p,s,l);
        return p;
    }
    
    size_t zmalloc_used_memory(void) {
        size_t um;
    
        if (zmalloc_thread_safe) {
    #ifdef HAVE_ATOMIC
            um = __sync_add_and_fetch(&used_memory, 0);
    #else
            pthread_mutex_lock(&used_memory_mutex);
            um = used_memory;
            pthread_mutex_unlock(&used_memory_mutex);
    #endif
        }
        else {
            um = used_memory;
        }
    
        return um;
    }
    
    void zmalloc_enable_thread_safeness(void) {
        zmalloc_thread_safe = 1;
    }
    
    void zmalloc_set_oom_handler(void (*oom_handler)(size_t)) {
        zmalloc_oom_handler = oom_handler;
    }
    
    /* Get the RSS information in an OS-specific way.
     *
     * WARNING: the function zmalloc_get_rss() is not designed to be fast
     * and may not be called in the busy loops where Redis tries to release
     * memory expiring or swapping out objects.
     *
     * For this kind of "fast RSS reporting" usages use instead the
     * function RedisEstimateRSS() that is a much faster (and less precise)
     * version of the function. */
    
    #if defined(HAVE_PROC_STAT)
    #include <unistd.h>
    #include <sys/types.h>
    #include <sys/stat.h>
    #include <fcntl.h>
    
    size_t zmalloc_get_rss(void) {
        int page = sysconf(_SC_PAGESIZE);
        size_t rss;
        char buf[4096];
        char filename[256];
        int fd, count;
        char *p, *x;
    
        snprintf(filename,256,"/proc/%d/stat",getpid());
        if ((fd = open(filename,O_RDONLY)) == -1) return 0;
        if (read(fd,buf,4096) <= 0) {
            close(fd);
            return 0;
        }
        close(fd);
    
        p = buf;
        count = 23; /* RSS is the 24th field in /proc/<pid>/stat */
        while(p && count--) {
            p = strchr(p,' ');
            if (p) p++;
        }
        if (!p) return 0;
        x = strchr(p,' ');
        if (!x) return 0;
        *x = '';
    
        rss = strtoll(p,NULL,10);
        rss *= page;
        return rss;
    }
    #elif defined(HAVE_TASKINFO)
    #include <unistd.h>
    #include <stdio.h>
    #include <stdlib.h>
    #include <sys/types.h>
    #include <sys/sysctl.h>
    #include <mach/task.h>
    #include <mach/mach_init.h>
    
    size_t zmalloc_get_rss(void) {
        task_t task = MACH_PORT_NULL;
        struct task_basic_info t_info;
        mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT;
    
        if (task_for_pid(current_task(), getpid(), &task) != KERN_SUCCESS)
            return 0;
        task_info(task, TASK_BASIC_INFO, (task_info_t)&t_info, &t_info_count);
    
        return t_info.resident_size;
    }
    #else
    size_t zmalloc_get_rss(void) {
        /* If we can't get the RSS in an OS-specific way for this system just
         * return the memory usage we estimated in zmalloc()..
         *
         * Fragmentation will appear to be always 1 (no fragmentation)
         * of course... */
        return zmalloc_used_memory();
    }
    #endif
    
    /* Fragmentation = RSS / allocated-bytes */
    float zmalloc_get_fragmentation_ratio(size_t rss) {
        return (float)rss/zmalloc_used_memory();
    }
    
    #if defined(HAVE_PROC_SMAPS)
    size_t zmalloc_get_private_dirty(void) {
        char line[1024];
        size_t pd = 0;
        FILE *fp = fopen("/proc/self/smaps","r");
    
        if (!fp) return 0;
        while(fgets(line,sizeof(line),fp) != NULL) {
            if (strncmp(line,"Private_Dirty:",14) == 0) {
                char *p = strchr(line,'k');
                if (p) {
                    *p = '';
                    pd += strtol(line+14,NULL,10) * 1024;
                }
            }
        }
        fclose(fp);
        return pd;
    }
    #else
    size_t zmalloc_get_private_dirty(void) {
        return 0;
    }
    #endif

     

  • 相关阅读:
    java线程池,工作窃取算法
    java线程池,阿里为什么不允许使用Executors?
    CMakeLists 的使用,大型工程使用cmake 的构件过程
    ieee文献免费下载办法
    欧式距离、标准化欧式距离、马氏距离、余弦距离
    sliding window:"Marginalization","Schur complement","First estimate jacobin"
    机器学习中的线性代数之矩阵求导
    opencv中滤波方法学习
    opencv关于Mat类中的Scalar()---颜色赋值
    C/C++预处理指令#define,#ifdef,#ifndef,#endif…
  • 原文地址:https://www.cnblogs.com/yinbiao/p/11359773.html
Copyright © 2020-2023  润新知