• NOI 2008 志愿者招募


    NOI 2008 志愿者招募

    考虑用 $ p_i $ 表示第 $ i $ 天实际招收的人数,我们假设我们有三种志愿者,分别是 $ 1 o 2,1 o 3 , 2 o 3 $ ,我们招手的人数分别是 $ b_1,b_2,b_3 $

    那么第一天实际人数就是 $ p_1 = b_1+b_2 geq a_1 $ ,同理我们把三个不等式写出来:

    [b_1 + b_2 ge a_1\b_1 + b_2 + b_3 ge a_2\b_2 + b_3 ge a_3 ]

    发现这是个线性规划的模型,而且据说这题玄学线性规划也能跑过去。。

    然后考虑把 $ ge $ 变成 $ = $ ,设 $ d_i $ 是一个大于 $ 0 $ 的整数,并且

    [b_1 + b_2 = a_1 + d_1\b_1 + b_2 + b_3 = a_2 + d_2\b_2 + b_3 = a_3 + d_3 ]

    然后,我们发现如果第 $ i $ 种志愿者可以在 $ s o t $ 天工作,那么 $ b_i $ 一定会出现在第 $ s $ 到 $ t $ 个等式种。我们可以考虑利用这个性质,把等式差分一下,于是 $ b_i $ 就必然在 $ s $ 个等式为正, $ t + 1 $ 个等式为负。

    网络流有一个经典东西叫流量平衡,即对于一条边 $ x,y $ ,我们这条边的流量在 $ x $ 的流量中作为负值,在 $ y $ 中作为正值。于是可以考虑从 $ s $ 向 $ t + 1 $ 连一条容量无穷,费用为 $ c_i $ 的边。我们发现 $ d_i $ 可以类似做,从 $ i - 1 $ 向 $ i $ 连一条容量无穷,费用 0 的边,表示 $ d_{i-1} $ 。

    差分后的式子中还有 $ a_i - a_{i-1} $ 这个东西,如果是正的就从它向汇点连容量为 $ a_i - a_{i-1} $ 的边,否则从原点向它连 $ a_{i-1} - a_i $ 的边,费用为 0 。由于 $ d_i $ 可以随便取,这个最终的网络流费用为的 0 的边必然可以跑满,所以我们就满足了这些限制。最后 $ s o t + 1 $ 的边就是各个时段的安排的人数。

    #include "iostream"
    #include "algorithm"
    #include "cstring"
    #include "cstdio"
    #include "queue"
    using namespace std;
    #define MAXN 1009
    #define inf 0x3f3f3f3f
    class mincmaxf {
    #define maxn 50005
    public:
    #define N 10006
    #define M 100006
    #define INF 0x3f3f3f3f
        int tot, lnk[N], cur[N], ter[M], nxt[M], cap[M], cost[M], dis[N], ret;
        bool vis[N];
        void init( ) { tot = 1; }
        int add(int u, int v, int w, int c) {
            ter[++tot] = v, nxt[tot] = lnk[u], lnk[u] = tot, cap[tot] = w, cost[tot] = c;
            return tot;
        }
        int Ade(int u, int v, int w, int c) { add(v, u, 0, -c); return add(u, v, w, c); }
        bool spfa(int s, int t) {
            memset(dis, 0x3f, sizeof(dis));
            memcpy(cur, lnk, sizeof(lnk));
            std::queue<int> q;
            q.push(s), dis[s] = 0, vis[s] = 1;
            while (!q.empty()) {
                int u = q.front();
                q.pop(), vis[u] = 0;
                for (int i = lnk[u]; i; i = nxt[i]) {
                    int v = ter[i];
                    if (cap[i] && dis[v] > dis[u] + cost[i]) {
                        dis[v] = dis[u] + cost[i];
                        if (!vis[v]) q.push(v), vis[v] = 1;
                    }
                }
            }
            return dis[t] != INF;
        }
        int dfs(int u, int t, int flow) {
            if (u == t) return flow;
            vis[u] = 1;
            int ans = 0;
            for (int &i = cur[u]; i && ans < flow; i = nxt[i]) {
                int v = ter[i];
                if (!vis[v] && cap[i] && dis[v] == dis[u] + cost[i]) {
                    int x = dfs(v, t, std::min(cap[i], flow - ans));
                    if (x) ret += x * cost[i], cap[i] -= x, cap[i ^ 1] += x, ans += x;
                }
            }
            vis[u] = 0;
            return ans;
        }
        int mcmf(int s, int t) {
            int ans = 0;
            while (spfa(s, t)) {
                int x;
                while ((x = dfs(s, t, INF))) ans += x;
            }
            return ret;
        }
    } F ;
    int n , m;
    int s = 1007 , t = 1008;
    int A[MAXN];
    int main() {
    //    freopen("6.in","r",stdin);
        cin >> n >> m;
        F.init(  );
        for( int i = 1 ; i <= n ; ++ i ) scanf("%d",&A[i]);
        for( int i = n + 1 ; i >= 1 ; -- i ) A[i] = A[i] - A[i - 1];
        for( int i = 1 ; i <= n + 1 ; ++ i ) {
            if( A[i] > 0 ) F.Ade( i , t , A[i] , 0 );
            else F.Ade( s , i , -A[i] , 0 );
            if( i != 1 ) F.Ade( i - 1 , i , inf , 0 );
        }
        for( int i = 1 , s , t , c ; i <= m ; ++ i ) {
            scanf("%d%d%d",&s,&t,&c);
            F.Ade( t + 1 , s , inf , c );
        }
        cout << F.mcmf( s , t ) << endl;
    }
    
    
  • 相关阅读:
    Java Executors小结
    Java取得一个对象里所有get方法和set方法, 读取某个类下所有变量的名称
    js中的this
    style,ng-style, ng-attr-style的对比
    keil 赋值之后再声明变量提示错误error: #268: declaration may not appear after executable statement in block
    网络字节顺序为大端模式
    MDK警告 warning: #111-D: statement is unreachable
    #231-D: declaration is not visible outside of function
    linux修改文件所有者和文件所在组
    getpwuid()
  • 原文地址:https://www.cnblogs.com/yijan/p/12341120.html
Copyright © 2020-2023  润新知