• 整数中1出现的次数(从1到n整数中1出现的次数)


    题目描述

    求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数(从1 到 n 中1出现的次数)。
     

    当n = 3141592时:

    <thead></thead>
    mabones
    1 3141592 0 (3141592+8)/10*1+0=314160
    10 314159 2 (314159+8)/10*10+0=314160
    100 31415 92 (31415+8)/10*100+0=314200
    1000 3141 592 (3141+8)/101000+1(592+1)=314593

    当然后面还有m=10000,100000,1000000三种情况,对应着万位,十万位, 百万位为1时的情况

    下面说下a+8的意义:

    当考虑个位,十位,百位这三位为1的情况时:

    个位 2 ,当个位取值1时,前面的六位数字可由0~314159组成,即314160种情况

    十位9,当十位取值1时,前面的五位数字可由0~31415组成,十位之后的一位可由0~9组成,组合情况31416*10=314160种情况

    百位5,当百位取值为1时,前面的四位数字可由0~3141组成,百位之后的两位可由0~99组成,组合情况为3142*100=314200种情况


    注意:当考虑千位1时:

    千位1,千位取值即1,前面的三位数字可由0~314组成,但是当前面的值为314时,后面的三位只有0~592种情况(特殊情况),其余的情况即为前面的值为0~313,后面三位有0~999,情况数为3141000,所以总情况数为3141000 + 593=314593种情况

    这时可发现和代码中的公式算的情况是吻合的,a+8的巧妙之处在于当a的最后一位(当前分析位)为0或1时,加8不产生进位,这是为需要单独算的特殊情况做准备,而当前分析位为2~9时,不需要考虑特殊情况,所以允许加8产生的进位。

    链接:https://www.nowcoder.com/questionTerminal/bd7f978302044eee894445e244c7eee6
    来源:牛客网

    int countDigitOne(int n) {
        int ones = 0;
        for (long long m = 1; m <= n; m *= 10) {
            int a = n/m, b = n%m;
            ones += (a + 8) / 10 * m + (a % 10 == 1) * (b + 1);
        }
        return ones;
    }
  • 相关阅读:
    Redis学习——(1)Redis安装与配置
    Ubuntu14.04安装Apache2+SVN+Trac
    Ubuntu14.04配置文件Apache2.conf
    Ubuntu系统用户忘记密码
    java中无符号类型的处理[转]
    Golang 切片(slice)扩容机制源码剖析
    无线网络:无线城域网和无线广域网
    vue项目 镜像重置的命令
    批量下载阿里云rpm包
    HttpClient psot和get请求
  • 原文地址:https://www.cnblogs.com/yihangZhou/p/10474148.html
Copyright © 2020-2023  润新知