• 【组合数学】【P4996】 咕咕咕


    Description

    小 F 注意到,自己总是在某些情况下会产生歉意。每当他要检查自己的任务表来决定下一项任务的时候,如果当前他干了某些事情,但是没干另一些事情,那么他就会产生一定量的歉意——比如,无论他今天看没看比赛,只要没有补完月赛的锅,他都会在选择任务的时候产生 1 点歉意。小 F 完成所有任务后,他这一天的歉意值等于他每次选择任务时的歉意之和。

    过高的歉意值让小 F 感到不安。现在,小 F 告诉你他还有 n 项任务,并告诉你在 m 种情况中的一种 (state_i) 的情况下,小 F 会产生 (a_i) 点歉意。请你帮忙计算一下,小 F 在那一天所有可能的完成所有任务方式的歉意值之和是多少。

    由于答案可能很大,你只需要输出答案对 (998244353) 取模即可。

    Input

    输入一行两个整数 (n,m),表示有 (n) 项任务,在 (m) 种情况中下小 F 会产生歉意值。

    输入接下来 (m) 行,每行有一个长度为 (n)(0/1) 串 和 (state_i) 一个歉意值 (a_i)(state_{i,j})(0/1) 表示第 (j) 项任务此时没做 / 已经做了。

    详情请参考样例和样例解释。

    Output

    输出一行一个整数,表示小 F 在那一天所有可能的完成任务方式的歉意值之和对 (998244353) 取模的结果。

    Hint

    (1~leq~n~leq~20)

    (1~leq~m~leq~min(2^n,10^5))

    (1~leq~a_i~leq~10^5)

    Solution

    考虑状压,发现只能枚举子集转移,复杂度 (O(3^n)),显然过不去

    接着发现对答案产生贡献的状态并不多,考虑是否可以直接统计这些状态对答案产生的贡献。

    考虑一个非常显然的事情,如果状态 (A)(1) 的个数与状态 (B)(1) 的个数相同,那么从空集转到状态 (A)(B) 的方案数是相同的,同时从这两个状态转到全集的方案数也是相同的。

    根据乘法原理,从空集经过状态 (S) 再到全集的方案数为 (cnt_{s_1}~ imes~cnt_{s_0}),其中 (cnt_x) 为将 (x)(0) 变成 (1) 的方案数

    于是答案即为 (sum_{i=1}^{m}~cnt_{state_{i_1}}~ imes~cnt{state_{i_0}}~ imes~a_i)

    考虑怎么求 (cnt) 数组。显然可以 (O(3^n)) 状压在本机跑一会然后打表。

    考虑正常一点的做法。发现 (cnt) 的组合意义即为从几个数中选出几个当 (1) 然后剩下的 (0) 一次性变成 (1) 的方案数

    于是 (cnt_i~=~sum_{j=1}^{i} cnt_{i-j}~ imes~C_{i}^{j})

    于是递推一下组合数,递推一下cnt就做完了。

    Code

    #include <cstdio>
    #ifdef ONLINE_JUDGE
    #define freopen(a, b, c)
    #endif
    #define rg register
    #define ci const int
    #define cl const long long
    
    typedef long long int ll;
    
    namespace IPT {
    	const int L = 1000000;
    	char buf[L], *front=buf, *end=buf;
    	char GetChar() {
    		if (front == end) {
    			end = buf + fread(front = buf, 1, L, stdin);
    			if (front == end) return -1;
    		}
    		return *(front++);
    	}
    }
    
    template <typename T>
    inline void qr(T &x) {
    	rg char ch = IPT::GetChar(), lst = ' ';
    	while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
    	while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
    	if (lst == '-') x = -x;
    }
    
    template <typename T>
    inline void ReadDb(T &x) {
    	rg char ch = IPT::GetChar(), lst = ' ';
    	while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
    	while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
    	if (ch == '.') {
    		ch = IPT::GetChar();
    		double base = 1;
    		while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
    	}
    	if (lst == '-') x = -x;
    }
    
    namespace OPT {
    	char buf[120];
    }
    
    template <typename T>
    inline void qw(T x, const char aft, const bool pt) {
    	if (x < 0) {x = -x, putchar('-');}
    	rg int top=0;
    	do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
    	while (top) putchar(OPT::buf[top--]);
    	if (pt) putchar(aft);
    }
    
    const int maxt = 25;
    const int MOD = 998244353;
    
    int n, m, ans;
    int C[maxt][maxt], frog[maxt];
    
    void beginning();
    
    int main() {
    	freopen("1.in", "r", stdin);
    	qr(n); qr(m);
    	beginning();
    	while (m--) {
    		char ch = '-'; int _cnt = 0;
    		do {ch = IPT::GetChar();} while ((ch != '0') && (ch != '1'));
    		do {_cnt += ch - '0', ch = IPT::GetChar();} while ((ch == '0') || (ch == '1'));
    		int _a = 0; qr(_a);
    		ans = (ans + 1ll * frog[_cnt] * _a % MOD * frog[n - _cnt]) % MOD;
    	}
    	qw(ans, '
    ', true);
    	return 0;
    }
    
    void beginning() {
    	C[0][0] = 1;
    	for (rg int i = 1; i <= n; ++i) {
    		C[i][0] = 1;
    		for (rg int j = 1; j <= i; ++j) C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
    	}
    	frog[0] = 1;
    	for (rg int i = 1; i <= n; ++i) {
    		for (rg int j = 0; j <= i; ++j) {
    			frog[i] = (frog[i] + 1ll * frog[i - j] * C[i][j]) % MOD;
    		}
    	}
    }
    

    Summary

    当对答案产生贡献的状态很少时,考虑直接计算每个状态的贡献。

  • 相关阅读:
    3.使用Unity 创建自己的android AR 项目 (小白篇)
    2.关于Unity -Vuforia -Android 开发 ,平台的搭建(极品菜鸟完整版) 续
    (番外篇) 高通 AR Unity 虚拟按钮 -源于 官网
    浅谈HTTP协议与RESTful
    深入浅出浮点型
    华杰简易入门系列之正则表达式——基础篇
    50行实现简易HTTP服务器
    Android中SD卡内容读取和简易FTP文件上传(番外)
    Android中谷歌语音识别应用探究
    Linux系统安装Nodejs(4.4.7)
  • 原文地址:https://www.cnblogs.com/yifusuyi/p/10125954.html
Copyright © 2020-2023  润新知