• 《动手学深度学习(李沐)》笔记2


    多类逻辑回归

    from mxnet import gluon
    from mxnet import ndarray as nd
    
    def SGD(params, lr):
        for param in params:
            param[:] = param - lr * param.grad
    
    def transform(data, label):
        return data.astype('float32')/255, label.astype('float32')
    
    mnist_train = gluon.data.vision.FashionMNIST(train=True, transform=transform)
    mnist_test = gluon.data.vision.FashionMNIST(train=False, transform=transform)
    
    
    # 标签对应的服饰名字
    def get_text_labels(label):
        text_labels = [
            't-shirt', 'trouser', 'pullover', 'dress,', 'coat',
            'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot'
        ]
        return [text_labels[int(i)] for i in label]
    
    
    # 数据读取
    batch_size = 256
    # gluon.data的DataLoader 函数,它每次 yield ⼀个批量
    train_data = gluon.data.DataLoader(mnist_train, batch_size, shuffle=True)
    test_data = gluon.data.DataLoader(mnist_test, batch_size, shuffle=False)
    
    #初始化参数
    num_inputs = 784
    num_outputs = 10
    
    W = nd.random_normal(shape=(num_inputs, num_outputs))
    b = nd.random_normal(shape=num_outputs)
    
    params = [W, b]
    
    for param in params:
        param.attach_grad()
    
    # 定义模型
    # 多分类中,输出为每个类别的概率,这些概率和为1,通过softmax函数实现
    from mxnet import  nd
    def softmax(X):
        exp = nd.exp(X)
        partition = exp.sum(axis=1, keepdims=True)
        return exp / partition
    
    def net(X):
        return softmax(nd.dot(X.reshape((-1, num_inputs)), W) + b)
    
    # 交叉熵损失函数
    # 我们需要定义⼀个针对预测为概率值的损失函数。其中最常⻅的是交叉熵损失函数,它将两个概率
    # 分布的负交叉熵作为⽬标值,最小化这个值等价于最⼤化这两个概率的相似度。
    
    def corss_entropy(yhat, y):
        return - nd.pick(nd.log(yhat), y)
    
    # 计算精度
    # 给定⼀个概率输出,我们将预测概率最⾼的那个类作为预测的类,然后通过⽐较真实标号得到是否预测正确
    def accuracy(output, label):
        return nd.mean(output.argmax(axis=1)==label).asscalar()
    
    def evaluate_accuracy(data_iterator, net):
        acc = 0
        for data, label in data_iterator:
            output = net(data)
            # acc_tmp = accuracy(output, label)
            acc = acc + accuracy(output, label)
        return acc/len(data_iterator)
    
    # print(evaluate_accuracy(test_data, net))
    #
    # import sys
    # sys.path.append('..')
    from mxnet import autograd
    
    learning_rate = 0.1
    epochs = 5
    for epoch in range(epochs):
        train_loss = 0
        train_acc = 0
        for data, label in train_data:
            with autograd.record():
                output = net(data)
                loss = corss_entropy(output, label)
            loss.backward()
            # 将梯度做平均,这样学习率会对 batch size 不那么敏感
            SGD(params, learning_rate / batch_size)
    
            train_loss = train_loss + nd.mean(loss).asscalar()
            train_acc += accuracy(output, label)
    
        # 模型训练完之后进行测试
        test_acc = evaluate_accuracy(test_data, net)
        print("Epoch %d. Loss: %f, Train acc %f, Test acc %f" % (
            epoch, train_loss / len(train_data), train_acc / len(train_data), test_acc))
    
    
    # 对新的样本进行标签预测
    # 训练完之后,W,b参数已经固定,输入data,得到label就是预测过程
    data, label = mnist_test[0:9]
    print('true labels')
    print(get_text_labels(label))
    predicted_labels = net(data).argmax(axis=1)
    print('predicted labels')
    print(get_text_labels(predicted_labels.asnumpy()))

    image


    多类逻辑回归 — 使用Gluon

    from mxnet import gluon
    from mxnet import ndarray as nd
    from mxnet import autograd
    
    
    def transform(data, label):
        return data.astype('float32') / 255, label.astype('float32')
    
    
    mnist_train = gluon.data.vision.FashionMNIST(train=True, transform=transform)
    mnist_test = gluon.data.vision.FashionMNIST(train=False, transform=transform)
    
    batch_size = 256
    train_data = gluon.data.DataLoader(mnist_train, batch_size, shuffle=True)
    test_data = gluon.data.DataLoader(mnist_test, batch_size, shuffle=False)
    
    num_inputs = 784
    net = gluon.nn.Sequential()#定义空模型
    with net.name_scope():
        net.add(gluon.nn.Flatten())  # 将数据展开为batch_size*X格式的
        net.add(gluon.nn.Dense(10))#输出为10
    net.initialize()#初始化
    
    softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()  # Softmax 与CrossEntropyLoss的复合函数
    
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})#优化
    
    
    def accuracy(output, label):
        return nd.mean(output.argmax(axis=1) == label).asscalar()
    
    
    def evaluate_accuracy(test_data, net):
        acc = .0
        for data, label in test_data:
            output = net(data)
            acc += accuracy(output, label)
        return acc / len(test_data)
    
    
    epochs = 15
    for epoch in range(epochs):
        total_loss = .0
        total_acc = .0
        for data, label in train_data:
            with autograd.record():
                output = net(data)
                loss = softmax_cross_entropy(output, label)
            loss.backward()
            trainer.step(batch_size)#更新模型
            total_loss += nd.mean(loss).asscalar()
            total_acc += accuracy(output, label)
        test_acc = evaluate_accuracy(train_data, net)
        print("Epoch %d. Loss: %f, Train acc %f, Test acc %f" % (
        epoch, total_loss / len(train_data), total_acc / len(train_data), test_acc))

    image

  • 相关阅读:
    2021年2月4号
    2021年2月3号
    2021年2月2号
    2021年2月1日
    2021年1月31日
    2021年1月30日
    20171205xlVBA往返航班组合
    选择文件
    从VBA过渡到Python
    20171114xlVba选定单行记录并打印
  • 原文地址:https://www.cnblogs.com/yifdu25/p/8359730.html
Copyright © 2020-2023  润新知