• 【NLP-00-2】序列标注问题


    目录

    1. 序列标注问题之中文分词
    2. 序列标注之命名实体识别(NER)
    3. CRF和LSTM在序列标注上的优劣
    4. 补充标签表示

    序列标注问题是自然语言中最常见的问题,在深度学习火起来之前,常见的序列标注问题的解决方案都是借助于HMM模型,最大熵模型,CRF模型。尤其是CRF,是解决序列标注问题的主流方法。随着深度学习的发展,RNN在序列标注问题中取得了巨大的成果。而且深度学习中的end-to-end,也让序列标注问题变得更简单了。

    序列标注问题包括自然语言处理中的分词,词性标注,命名实体识别,关键词抽取,词义角色标注等等。我们只要在做序列标注时给定特定的标签集合,就可以进行序列标注。

    序列标注问题是NLP中最常见的问题,因为绝大多数NLP问题都可以转化为序列标注问题,虽然很多NLP任务看上去大不相同,但是如果转化为序列标注问题后其实面临的都是同一个问题。所谓"序列标注",就是说对于一个一维线性输入序列:

    给线性序列中的每个元素打上标签集合中的某个标签:

    所以,其本质上是对线性序列中每个元素根据上下文内容进行分类的问题。一般情况下,对于NLP任务来说,线性序列就是输入的文本,往往可以把一个汉字看做线性序列的一个元素,而不同任务其标签集合代表的含义可能不太相同,但是相同的问题都是:如何根据汉字的上下文给汉字打上一个合适的标签(无论是分词,还是词性标注,或者是命名实体识别,道理都是想通的)。

    一、序列标注问题之中文分词

    以中文分词任务来说明序列标注的过程。假设现在输入句子"跟着TFboys学左手右手一个慢动作",我们的任务是正确地把这个句子进行分词。首先,把句子看做是一系列单字组成的线性输入序列,即:

    序列标注的任务就是给每个汉字打上一个标签,对于分词任务来说,我们可以定义标签集合为(jieba分词中的标签集合也是这样的):

    其中B代表这个汉字是词汇的开始字符,M代表这个汉字是词汇的中间字符,E代表这个汉字是词汇的结束字符,而S代表单字词。

    有了这四个标签就可以对中文进行分词了。这时你看到了,中文分词转换为对汉字的序列标注问题,假设我们已经训练好了序列标注模型,那么分别给每个汉字打上标签集合中的某个标签,这就算是分词结束了,因为这种形式不方便人来查看,所以可以增加一个后处理步骤,把B开头,后面跟着M的汉字拼接在一起,直到碰见E标签为止,这样就等于分出了一个单词,而打上S标签的汉字就可以看做是一个单字词。于是我们的例子就通过序列标注,被分词成如下形式:

    在这里我们可以采用双向LSTM来处理该类问题,双向会关注上下文的信息。

    在NLP中最直观的处理问题的方式就是要把问题转换为序列标注问题,思考问题的思维方式也就转换为序列标注思维,这个思维很重要,决定你能否真的处理好NLP问题。

    二、序列标注之命名实体识别(NER

    我们再来看看命名实体识别问题中的序列标注,命名实体识别任务是识别句子中出现的实体,通常识别人名、地名、机构名这三类实体。现在的问题是:假设输入中文句子

    我们要识别出里面包含的人名、地名和机构名。如果以序列标注的角度看这个问题,我们首先得把输入序列看成一个个汉字组成的线性序列,然后我们要定义标签集合,标签集合如下(在这里的标签用什么代表不重要,重要的是它代表的含义):

    其中,BA代表这个汉字是地址首字,MA代表这个汉字是地址中间字,EA代表这个汉字是地址的尾字;BO代表这个汉字是机构名的首字,MO代表这个汉字是机构名称的中间字,EO代表这个汉字是机构名的尾字;BP代表这个汉字是人名首字,MP代表这个汉字是人名中间字,EP代表这个汉字是人名尾字,而O代表这个汉字不属于命名实体。

    有了输入汉字序列,也有了标签集合,那么剩下的问题是训练出一个序列标注ML系统,能够对每一个汉字进行分类,假设我们已经学好了这个系统,那么就给输入句子中每个汉字打上标签集合中的标签,于是命名实体就被识别出来了,为了便于人查看,增加一个后处理步骤,把人名、地名、机构名都明确标识出来即可。

    除了上面的分词和命名实体标注,很多其他的NLP问题同样可以转换为序列标注问题,比如词性标注、CHUNK识别、句法分析、语义角色识别、关键词抽取等。

    传统解决序列标注问题的方法包括HMM/MaxEnt/CRF等,很明显RNN很快会取代CRF的主流地位,成为解决序列标注问题的标准解决方案,那么如果使用RNN来解决各种NLP基础及应用问题,我们又该如何处理呢,下面我们就归纳一下使用RNN解决序列标注问题的一般优化思路。

    对于分词、词性标注(POS)、命名实体识别(NER)这种前后依赖不会太远的问题,可以用RNN或者BiRNN处理就可以了。而对于具有长依赖的问题,可以使用LSTM、RLSTM、GRU等来处理。关于GRU和LSTM两者的性能差不多,不过对于样本数量较少时,有限考虑使用GRU(模型结构较LSTM更简单)。此外神经网络在训练的过程中容易过拟合,可以在训练过程中加入Dropout或者L1/L2正则来避免过拟合。

    三、CRFLSTM在序列标注上的优劣

    LSTMRNNLSTMBILSTM这些模型,它们在序列建模上很强大,它们能够capture长远的上下文信息,此外还具备神经网络拟合非线性的能力,这些都是crf无法超越的地方,对于t时刻来说,输出层yt受到隐层ht(包含上下文信息)和输入层xt(当前的输入)的影响,但是yt和其他时刻的yt`是相互独立的,感觉像是一种point wise,对当前t时刻来说,我们希望找到一个概率最大的yt,但其他时刻的yt`对当前yt没有影响,如果yt之间存在较强的依赖关系的话(例如,形容词后面一般接名词,存在一定的约束),LSTM无法对这些约束进行建模,LSTM模型的性能将受到限制。

    CRF它不像LSTM等模型能够考虑长远的上下文信息,它更多考虑的是整个句子的局部特征的线性加权组合(通过特征模版去扫描整个句子)。关键的一点是,CRF的模型为p(y | x, w),注意这里yx都是序列,它有点像list wise,优化的是一个序列y = (y1, y2, …, yn),而不是某个时刻的yt,即找到一个概率最高的序列y = (y1, y2, …, yn)使得p(y1, y2, …, yn| x, w)最高,它计算的是一种联合概率,优化的是整个序列(最终目标),而不是将每个时刻的最优拼接起来,在这一点上CRF要优于LSTM

    HMMCRF不管是在实践还是理论上都要优于HMMHMM模型的参数主要是"初始的状态分布""状态之间的概率转移矩阵""状态到观测的概率转移矩阵",这些信息在CRF中都可以有,例如:在特征模版中考虑h(y1), f(yi-1, yi), g(yi, xi)等特征。

    CRFLSTM从数据规模来说,在数据规模较小时,CRF的试验效果要略优于BILSTM,当数据规模较大时,BILSTM的效果应该会超过CRF。从场景来说,如果需要识别的任务不需要太依赖长久的信息,此时RNN等模型只会增加额外的复杂度,此时可以考虑类似科大讯飞FSMN(一种基于窗口考虑上下文信息的"前馈"网络)。

    CNNBILSTMCRF这是目前学术界比较流行的做法,BILSTMCRF是为了结合以上两个模型的优点,CNN主要是处理英文的情况,英文单词是由更细粒度的字母组成,这些字母潜藏着一些特征(例如:前缀后缀特征),通过CNN的卷积操作提取这些特征,在中文中可能并不适用(中文单字无法分解,除非是基于分词后),这里简单举一个例子,例如词性标注场景,单词footballbasketball被标为名词的概率较高,这里后缀ball就是类似这种特征。

    四、补充标签表示

    对于第一节提到的Labelset做一些补充,一些文章经常用IOBES,IOB等来进行标注:
    上述涉及的解释如下:
    B,即Begin,表示开始
    I,即Intermediate,表示中间
    E,即End,表示结尾
    S,即Single,表示单个字符
    O,即Other,表示其他,用于标记无关字符
    常用的较为流行的标签方案有如下几种:
    IOB1: 标签I用于文本块中的字符,标签O用于文本块之外的字符,标签B用于在该文本块前面接续则一个同类型的文本块情况下的第一个字符。
    IOB2: 每个文本块都以标签B开始,除此之外,跟IOB1一样。
    IOE1: 标签I用于独立文本块中,标签E仅用于同类型文本块连续的情况,假如有两个同类型的文本块,那么标签E会被打在第一个文本块的最后一个字符。
    IOE2: 每个文本块都以标签E结尾,无论该文本块有多少个字符,除此之外,跟IOE1一样。
    SBEIO、IOBES: 包含了全部的5种标签,文本块由单个字符组成的时候,使用S标签来表示,由一个以上的字符组成时,首字符总是使用B标签,尾字符总是使用E标签,中间的字符使用I标签。
    IO: 只使用I和O标签,显然,如果文本中有连续的同种类型实体的文本块,使用该标签方案不能够区分这种情况。
    其中最常用的是IOB2、IOBS、IOBES。

    参考文献

    https://www.cnblogs.com/jiangxinyang/p/9368482.html

    使用RNN解决NLP中序列标注问题的通用优化思路

    使用深度学习进行中文自然语言处理之序列标注

    CRFLSTM 模型在序列标注上的优劣?

  • 相关阅读:
    解决ios下iframe不能滑动
    每天一题之js执行顺序
    async函数的返回值
    小程序自定义Tabbar
    windows10配置vue3项目踩坑记录
    vue2+循环链表解决一个历史趣题
    小程序内协议使用的三种方法
    HDFS的java操作
    HDFS工作原理笔记
    win10已经编译好的hadoop2.6.5
  • 原文地址:https://www.cnblogs.com/yifanrensheng/p/12953179.html
Copyright © 2020-2023  润新知