• 35 怎么优化join


    35 怎么优化join

    上一篇介绍了join的两种算法:nljbnl

    create table t1(id int primary key, a int, b int, index(a));
    create table t2 like t1;
    drop procedure idata;
    delimiter ;;
    create procedure idata()
    begin
      declare i int;
      set i=1;
      while(i<=1000)do
        insert into t1 values(i, 1001-i, i);
        set i=i+1;
      end while;
      
      set i=1;
      while(i<=1000000)do
        insert into t2 values(i, i, i);
        set i=i+1;
      end while;
    
    end;;
    delimiter ;
    call idata();

    Multi-Range Read优化

    Multi-range readMRR),优化的主要目的是尽量使用顺序读盘

    在介绍innodb的索引结构时,提到了回表的概念,回表是指,在innodb普通索引a上查到主键id的值后,再根据一个个主键id的值到主键索引上去查询整行数据的过程。

    但是回表的过程是一行行的查数据还是批量的查询数据呢?

    select * from t1 where a>=1 and a<=100;

    主键索引是一个B+tree,在这个树上,每次只能根据一个主键id查到一行数据,因此,回表肯定是一行行搜索主键索引

    随着a的值递增顺序查询的话,id的值就变成随机的,那么就会出现随机访问,性能相对较差,虽然”按行查”这个机制不能改,但是调整查询的顺序还是能够加速的。

    因为大多数的数据都是按照主键递增顺序插入得到的,所以我们可以认为,如果按照主键的递增顺序查询的话,对磁盘的读比较接近顺序读,能够提升读性能

    这就是mrr的优化设计的思路,语句的执行流程:

    --1 根据索引a,定位到满足条件的记录,将id值放入read_rnd_buffer

    --2 read_rnd_buffer中的id进行递增排序

    --3 排序后的id数组,依次到主键id索引中查询记录,并作为结果返回。

    这里read_rnd_buffer的大小由read_rnd_buffer_size参数控制,如果read_rnd_buffer放满了,就会先执行步骤23,然后清空read_rnd_buffer,之后继续找索引a的下个记录,并继续循环。--如果主键是uuid类型,排序就没有必要了,也没有必要使用MRR

    如果要稳定的使用MRR优化,需要设置set optimizer_switch='mrr_cost_based=off';

    使用mrr的流程

     

    explain

    可以看到extra字段多了MRR,表示的是用上了mrr优化,而且,由于我们在read_rnd_buffer中按照id做了排序,所以最后得到的结果集也是按照主键id递增顺序的,

    MRR能够提升性能的核心在于,这条查询语句在索引a上做的是一个范围查询(也就是说是一个多值查询),可以得到足够多的主键id。这样通过排序以后,再去主键索引查数据,才能体现出顺序性”的优势。

    Bathed Key Access

    mysql 5.6版本开始引入了BKA算法,其实是对NLJ算法的优化。

    在看一下上一篇提到的NLJ算法的流程

    NLJ算法执行的逻辑是:从驱动表t1,一行行地取出a的值,再到被驱动表t2上去做join,也就是说,对于表t2,每次都是匹配一个值,这时,mrr的优势就用不上了。

    现把表t1的数据取出来一部分,先放到一个临时内存,这个临时内存就是join_buffer

    上面NLJ算法优化后

    图中,在join_buffer中放入的数据是R1-R100,表示只会取查询需要的字段,当然join_buffer中放不下R1-R100的所有数据,就会把这100行数据分成多个段执行

    开启BKA算法

    set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

    BNL算法的性能问题

    如果一个使用BNL算法的join语句,多次扫描一个冷表,而且这个语句执行时间超过1秒,就会在再次扫描冷表的时候,把冷表的数据页移到LRU链表头部。

    如果这个冷表很大,就会出现另外一种情况,业务正常访问的数据页,没有机会进入young区域,由于优化机制的存在,一个正常访问的数据页,要进入young区域,需要隔1秒再次被访问到,但是,由于我们的join语句在循环读磁盘和淘汰内存页,进入old区域的数据页,很可能在1秒之内就被淘汰了,这样,就会导致这个mysql实例的buffer pool在这段时间内,young区域的数据页每页被合理淘汰掉。

    大表join操作虽然对io有影响,但是在语句执行结束后,对io的影响也就结束了。但是,对buffer pool的影响就是持续性的,需要依靠后续的查询请求慢慢恢复内存命中率

    为了减少这种影响,可以考虑增大join_buffer_size值,减少对被驱动表的扫描次数。

    也就是说,BNL算法对系统的影响
    --1 可能会多次扫描被驱动表,占用磁盘io资源

    --2 判断join条件需要执行M*N次对比(M,N分别是两张表的行数),如果是大表就会占用非常多的cpu资源

    --3 可能会导致buffer pool的热数据被淘汰,影响内存命中率。

    在执行语句之前,需要通过理论分析和查看explain结果的方式,确认是否使用BNL算法,如果确认优化器会使用BNL算法,就需要做优化,优化的常见做法是,给被驱动表的join字段上加索引,BNL算法转换成BKA算法

    create index idx_t2_b on t2(b);

     

    BNLBKA

    一些情况下,我们可以直接在被驱动表上建立索引,这时就可以直接转成BKA算法,但是,有时候确实会碰到一些不适合在被驱动表上建立索引的情况

    select * from t1 join t2 on (t1.b=t2.b) where t2.b>=1 and t2.b<=2000;

    t2表中插入了100w行数据,但是经过where条件过滤后,需要参与join的只有2000行数据,如果这条语句同时是一个低频的sql语句,那么再为这个语句在表t2的字段b上建立一个索引就很浪费了。

    使用BNL算法来join的话,这个语句的执行流程

    --1 把表t1的所有字段取出来,存入join_buffer,这个表只有1000行,join_buffer_size默认256k,可以完全存入

    --2 扫描表t2,取出每一行数据跟join_buffer中的数据进行对比

    ---如果不满足t1.b=t2.b则跳过

    ---如果满足t1.b=t2.b,在判断其他条件,也就是是否满足t2.b处于[1,2000]的条件,如果是,就作为结果集的一部分返回,否则跳过。

    对于表t2的每一行,判断join是否满足的时候,都需要遍历join_buffer中的所有行,因此判断等值的次数1000*100万次,

    查询结果耗时

    explain 中看到使用了BNL算法

    在表t2的字段b上创建索引会浪费资源,但是不创建索引的话这个语句的等值判断要消耗1000*100w

    这时候,可以考虑使用临时表,大致思路:

    --1 把表t2中满足条件的数据放在临时表tmp_t

    --2 为了让join使用BKA算法,给临时表tmp_t的字段b上加上索引

    --3 让表t1tmp_tjoin操作

    耗时

     

    相比前面的BNL算法,性能提升很高。

    总体来说,不论是在原表上加索引,还是用索引的临时表,我们的思路是让join语句能够使用被驱动表上的索引,来触发BKA算法,提升查询性能。

    扩展-hash join

    由于mysql的优化器和执行器不支持hash join,可以自己在业务端实现,大致流程

    --1 select * from t1;取得表t1的全部1000行数据,在业务端存入一个hash结构,比如C++里面的setphp的数组这样的数据结构

    --2 select * from t2 where b>=1 and b<=2000;获取t2中满足条件的2000行数据

    --3 把这2000行数据,一行一行地取到业务端,到hash结构的数据表中寻找匹配的数据,满足匹配的条件的这行数据,就作为结果集的一行。

    小结:

    介绍了NLJBNL的优化方法

    在这些优化方法中:

    --1 BKA优化是mysql已经内置支持的,建议默认使用

    --2 BNL算法效率低,建议尽量转换成BKA算法,优化的方向就是给被驱动表的管理字段上加上索引

    --3 基于临时表的改进方案,对于能够提前过滤小数据的join来说,效果还是很好的

    --4 mysql目前的版本还不支持hash join,可以配合应用端模拟出来

  • 相关阅读:
    关于学习Knockoutjs--入门(一)
    h5移动端前端性能优化
    VS2015常用快捷键总结
    51nod1196 字符串的数量
    51nod1189 阶乘分数
    51nod1161 Partial Sums
    51nod1040 矩阵相乘结果的判断
    51nod 1125 交换机器的最小代价
    51nod 1120 机器人走方格 V3
    51nod 1040 最大公约数之和
  • 原文地址:https://www.cnblogs.com/yhq1314/p/10839440.html
Copyright © 2020-2023  润新知