几乎可以作为任何需要基础概率论知识的学科的前导资料
Random Graphs by Béla Bollobás 书里给出的就是快问快答的形式,这里摘几个较新鲜的。不定期更新
概率论中的马尔科夫不等式
if (X) is a non-negative r.v. with mean (mu) and (tgeq0),then
改写一下就成为Markov's inequality
概率论中的切比雪夫不等式
Now let (X) be a real-valued r.v. with mean (mu) and variance (sigma^2) .if (dgeq 0)
改写一下就成为Chebyshev's inequality
the total variation distance
r-th factorial moment有什么用
其中((k)_r)是下降乘,共(r)项
Note that if (X) denotes the number of objects in a certain class then (E_r(X)) is the expected number of ordered r-tuples of elements of that class.
各种分布之间的联系
给个链接
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
geometric distribution 几何分布
The binomial distribution describes the number of successes among n trials, with the probability of a success being p. Now consider the number of failures encountered prior to the first success, and denote this by Y.
期望(q/p),方差(q/p^2),r-th factorial moment (r!(q/p)^r)
负二项分布
The number of failures prior to the rth success, say (Zr), is said to have a negative binomial distribution
Since Zr is the sum of r independent geometric r.vs,
期望(rp/q),方差(rq/p^2)
几何分布的连续版本是指数分布(或负指数分布)
一个非负实随机变量(L)被认为具有参数(lambda> 0)的指数分布如果
PDF是(lambda e^{-lambda t}) 期望(1/lambda) 方差(1/lambda^2)
超几何分布 从(N)个红蓝双色球中抽取(n)个球的颜色统计
The hypergeometric distribution with parameters (N,R)and (n)((0<n<N,0<R<N))
其中(s=min{n,R})
泊松分布
期望(lambda>0)