流水账流水账这篇什么都不是
- 方法
- 10.2 Lattice paths without restrictions 无限制格子路径
- 10.3 Linear boundaries of slope 1
- 10.4 Simple paths with linear boundaries of rational slope,部分一
- 10.5 Simple paths with linear boundaries with rational slope,部分二
- 10.6 Simple paths with a piecewise linear boundary
- 10.7 Simple paths with general boundaries
- 10.8 Elementary results on Motzkin and Schröder paths
- 10.9 A continued fraction for the weighted counting of Motzkin paths
- 10.10 Lattice paths and orthogonal polynomials
- 10.11 Motzkin paths in a strip
- 10.12 Further results for lattice paths in the plane
- 10.13 Non-intersecting lattice paths
- 10.14 Lattice paths and their turns
- 10.15 Multidimensional lattice paths
- 10.16 Multidimensional lattice paths bounded by a hyperplane
- 10.17 Multidimensional paths with a general boundary
- 10.18 The reflection principle in full generality
- 10.19 q-Counting of lattice paths and Rogers–Ramanujan identities
- 10.20 Self-avoiding walks
吐个槽,以为逛组合学就不要看到大段复杂的公式了,结果。。。后面的哪些公式(omegavarpi)都出来了,还一堆上下标。。。(sum)下面求和范围都密密麻麻写两行。。。
方法
如果某人尝试去列出格子路径计数问题中的一些重要方法,那么会包括下面这些:
- 生成函数;拉格朗日反演公式 ;residue calcus
- 一一映射
- reflection principle
- cycle lemma
- 转移函数方法
- 核方法
- the path switching involution for non-intersecting lattice paths
- manipulation of two-rowed arrays for turn enumeration
- 正交多项式;连分数
10.2 Lattice paths without restrictions 无限制格子路径
2维的例子,从(a,b)到(c,d),允许(0,1)和(1,0)
n维的例子,从(mathbf{a})到(mathbf{e}),每次允许一个维度+1
2维的例子,从(a,b)到(c,d),允许((0,pm1))和((pm1,0)),走n个steps
2维的例子,从(a,b)到(c,d),允许(0,1)和(1,0)和(1,1)
一个带权重计数,联系了格子路径计数和整数分拆
记号(a(P))表示path (P)的水平step和x轴夹的面积的代数和
一个q-模拟
举例:从(0,0)到(2,2)有6种
是UURR,URUR,RURU,RRUU,URRU,RUUR
10.3 Linear boundaries of slope 1
Theorem 10.3.1 在y=x对角线下
其中(a geq b,cgeq d)
特例有:
ballot problem
卡特兰数
Theorem 10.3.3 在两条斜率1的对角线之间
其中(a+tgeq bgeq a+s) and (c+tgeq dgeq c+s)
如果利用一些余数微积分的知识,我们可以改写成有sine和cosine的formula,这样容易分析渐进性质:
10.4 Simple paths with linear boundaries of rational slope,部分一
Theorem 10.4.1 rational Catalan number
这里没错。。。我找了个pdf
这个数如今被称为有理卡特兰数,
如果让(r=n,s=n+1),那么成为卡特兰数(frac{1}{n+1}left(egin{array}{c} 2n \ n end{array} ight))
Theorem 10.4.5
其中,(mu)是一个非负整数,(cgeq old{mu} d)
Lemma 10.4.6 Cycle Lemma
Theorem 10.4.7
10.5 Simple paths with linear boundaries with rational slope,部分二
10.6 Simple paths with a piecewise linear boundary
picewise 分段的,逐段的
像下面这样
Theorem 10.6.1
10.7 Simple paths with general boundaries
Theorem 10.7.1
10.8 Elementary results on Motzkin and Schröder paths
一些著名paths
常见的就这么几种
Motzkin paths 允许(1,1),(1,-1),(1,0) 不会到x轴下方
Schröder paths 允许(1,1),(1,-1),(2,0) 不会到x轴下方
Catalan paths 允许(1,1),(1,-1) 不会到x轴下方
Dyck paths 上面的3种只要出发点和终点都在x轴上,就叫做Dyck paths
Theorem 10.8.1
Motzkin paths enumeration
Schröder paths enumeration
Corollary 10.8.2
出发点和结束点都在x轴上的Motzkin paths计数
出发点和结束点都在x轴上的Schröder paths计数
10.9 A continued fraction for the weighted counting of Motzkin paths
给每个Motzkin path定义一个weight,定义为:
是所有step权重的乘积,
up-step的权重是(1),level step at height (h)的权重是(b_h),down step from height (h) to height (h-1)的权重是(lambda_h)
Theorem 10.9.1 Motzkin path带权重
Theorem 10.9.2 Motzkin和Schröder number的GF
Theorem 10.9.3 Dyck path带权重
10.10 Lattice paths and orthogonal polynomials
10.11 Motzkin paths in a strip
10.12 Further results for lattice paths in the plane
10.13 Non-intersecting lattice paths
一些定义
有点像以前写过的routing,non-intersecting但是可以cross
Theorem 10.13.1
其实还是这个:以前写过的routing
剩下的看不懂看不懂看不懂
10.14 Lattice paths and their turns
10.15 Multidimensional lattice paths
10.16 Multidimensional lattice paths bounded by a hyperplane
10.17 Multidimensional paths with a general boundary
10.18 The reflection principle in full generality
10.19 q-Counting of lattice paths and Rogers–Ramanujan identities
10.20 Self-avoiding walks
说这个求精确解是复杂的,求渐进的情况是很多的。给你列出了参考文献
其中推荐的standard book(标准教科书)N.MadrasandG.Slade. The self-avoiding walk. Probability and its Applications, Birkh¨auser Boston, Inc., Boston, MA, 1993.
资料来自网络
书用的是Handbook of Enumerative Combinatorics by Miklos Bona
许多组合大牛写的组合计数综述合集,几乎覆盖组合计数学的各个方面