1.Beam Model
Beam Model我将它叫做测量光束模型。个人理解,它是一种完全的物理模型,只针对激光发出的测量光束建模。将一次测量误差分解为四个误差。
$ph_{hit}$,测量本身产生的误差,符合高斯分布。
$ph_{xx}$,由于存在运动物体产生的误差。
...
2.Likehood field
似然场模型,和测量光束模型相比,考虑了地图的因素。不再是对激光的扫描线物理建模,而是考虑测量到的物体的因素。
似然比模型本身是一个传感器观测模型,之所以可以实现扫描匹配,是通过划分栅格,步进的方式求的最大的Score,将此作为最佳的位姿。
for k=1:size(zt,1)
if zt(k,2)>0
d = -grid_dim/2;
else
d = grid_dim/2;
end
phi = pi_to_pi(zt(k,2) + x(3));
if zt(k,1) ~= Z_max
ppx = [x(1),x(1) + zt(k,1)*cos(phi) + d];
ppy = [x(2),x(2) + zt(k,1)*sin(phi) + d];
end_points = [end_points;ppx(2),ppy(2)];
wm = likelihood_field_range_finder_model(X(j,:)',xsensor,...
zt(k,:)',nearest_wall, grid_dim, std_hit,Z_weights,Z_max);
W(j) = W(j) * wm;
else
dist = Z_max + std_hit*randn(1);
ppx = [x(1),x(1) + dist*cos(phi) + d];
ppy = [x(2),x(2) + dist*sin(phi) + d];
missed_points = [missed_points;ppx(2),ppy(2)];
end
set(handle_sensor_ray(k),'XData', ppx, 'YData', ppy)
end
function q = likelihood_field_range_finder_model(X,x_sensor,zt,N,dim,std_hit,Zw,z_max) % retorna probabilidad de medida range finder :) % X col, zt col, xsen col [n,m] = size(N); % Robot global position and orientation theta = X(3); % Beam global angle theta_sen = zt(2); phi = pi_to_pi(theta + theta_sen); %Tranf matrix in case sensor has relative position respecto to robot's CG rotS = [cos(theta),-sin(theta);sin(theta),cos(theta)]; % Prob. distros parameters sigmaR = std_hit; zhit = Zw(1); zrand = Zw(2); zmax = Zw(3); % Actual algo q = 1; if zt(1) ~= z_max % get global pos of end point of measument xz = X(1:2) + rotS*x_sensor + zt(1)*[cos(phi); sin(phi)]; xi = floor(xz(1)/dim) + 1; yi = floor(xz(2)/dim) + 1; % if end point doesn't lay inside map: unknown if xi<1 || xi>n || yi<1 || yi>m q = 1.0/z_max; % all measurements equally likely, uniform in range [0-zmax] return end dist2 = N(xi,yi); gd = gauss_1D(0,sigmaR,dist2); q = zhit*gd + zrand/zmax; end end
3.Correlation based sensor models相关分析模型
XX提出了一种用相关函数表达马尔科夫过程的扫描匹配方法。
互相关方法Cross-Correlation,另外相关分析在进行匹配时也可以应用,比如对角度直方图进行互相关分析,计算变换矩阵。
参考文献:A Map Based On Laser scans without geometric interpretation
circular Cross-Correlation的Matlab实现
1 % Computes the circular cross-correlation between two sequences 2 % 3 % a,b the two sequences 4 % normalize if true, normalize in [0,1] 5 % 6 function c = circularCrossCorrelation(a,b,normalize) 7 8 for k=1:length(a) 9 c(k)=a*b'; 10 b=[b(end),b(1:end-1)]; % circular shift 11 end 12 13 if normalize 14 minimum = min(c); 15 maximum = max(c); 16 c = (c - minimum) / (maximum-minimum); 17 end
4.MCL
蒙特卡洛方法
5.AngleHistogram
角度直方图
6.ICP/PLICP/MBICP/IDL
属于ICP系列,经典ICP方法,点到线距离ICP,
7.NDT
正态分布变换
8.pIC
结合概率的方法
9.线特征
目前应用线段进行匹配的试验始终不理想:因为线对应容易产生错误,而且累积误差似乎也很明显!