题目:求不超过n的最大的x/φ(x),当中φ(x)是欧拉函数。
分析:数论。大整数。
比赛时直接打表计算的。
实际上:φ(n)= n *(1 - 1/p1)*(1 - 1/p2)*(1 - 1/p3)*…*(1 - 1/pt)。
所以有:x/φ(x)= 1 /((1 - 1/p1)*(1 - 1/p2)*(1 - 1/p3)*…*(1 - 1/pt))。
因此,相应的最大值应该是 f(n)= 2*3*5*...*pk <= n 的最大值。
说明:在比赛即将结束的20分钟,猛敲了这到题目。(2011-9-19 01:12)
#include <stdio.h> #include <stdlib.h> #include <string.h> char prime[ 53 ][ 101 ] = { "2", "6", "30", "210", "2310", "30030", "510510", "9699690", "223092870", "6469693230", "200560490130", "7420738134810", "304250263527210", "13082761331670030", "614889782588491410", "32589158477190044730", "1922760350154212639070", "117288381359406970983270", "7858321551080267055879090", "557940830126698960967415390", "40729680599249024150621323470", "3217644767340672907899084554130", "267064515689275851355624017992790", "23768741896345550770650537601358310", "2305567963945518424753102147331756070", "232862364358497360900063316880507363070", "23984823528925228172706521638692258396210", "2566376117594999414479597815340071648394470", "279734996817854936178276161872067809674997230", "31610054640417607788145206291543662493274686990", "4014476939333036189094441199026045136645885247730", "525896479052627740771371797072411912900610967452630", "72047817630210000485677936198920432067383702541010310", "10014646650599190067509233131649940057366334653200433090", "1492182350939279320058875736615841068547583863326864530410", "225319534991831177328890236228992001350685163362356544091910", "35375166993717494840635767087951744212057570647889977422429870", "5766152219975951659023630035336134306565384015606066319856068810", "962947420735983927056946215901134429196419130606213075415963491270", "166589903787325219380851695350896256250980509594874862046961683989710", "29819592777931214269172453467810429868925511217482600306406141434158090", "5397346292805549782720214077673687806275517530364350655459511599582614290", "1030893141925860008499560888835674370998623848299590975192766715520279329390", "198962376391690981640415251545285153602734402721821058212203976095413910572270", "39195588149163123383161804554421175259738677336198748467804183290796540382737190", "7799922041683461553249199106329813876687996789903550945093032474868511536164700810", "1645783550795210387735581011435590727981167322669649249414629852197255934130751870910", "367009731827331916465034565550136732339800312955331782619462457039988073311157667212930", "83311209124804345037562846379881038241134671040860314654617977748077292641632790457335110", "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190", "4445236185272185438169240794291312557432222642727183809026451438704160103479600800432029464270", "1062411448280052319722448549835623701226301211611796930357321893850294264731624591303255041960530", "256041159035492609053110100510385311995538591998443060216114576417920917800321526504084465112487730"}; int len[ 53 ]; char data[ 101 ]; int main() { for ( int i = 0 ; i < 53 ; ++ i ) len[ i ] = strlen( prime[ i ] ); int t;scanf("%d",&t); for ( int k = 0 ; k < t ; ++ k ) { scanf("%s",data); int i = 0,l = strlen( data ); while ( l > len[ i ] ) ++ i; if ( len[ i ] == l && strcmp( prime[ i ], data ) > 0 ) -- i; if ( len[ i ] > l ) -- i; if ( l == 1 && strcmp( data, "6" ) >= 0 ) printf("6 "); else if ( l == 1 && strcmp( data, "2" ) >= 0 ) printf("2 "); else printf("%s ",prime[ i ]); } return 0; }