• Logstash学习之路(四)使用Logstash将mysql数据导入elasticsearch(单表同步、多表同步、全量同步、增量同步)


    一、使用Logstash将mysql数据导入elasticsearch

    1、在mysql中准备数据:

    mysql> show tables;
    +----------------+
    | Tables_in_yang |
    +----------------+
    | im             |
    +----------------+
    1 row in set (0.00 sec)
    
    mysql> select * from im;
    +----+------+
    | id | name |
    +----+------+
    |  2 | MSN  |
    |  3 | QQ   |
    +----+------+
    2 rows in set (0.00 sec)

    2、简单实例配置文件准备:

    [root@master bin]# cat mysqles.conf 
    input {
            stdin {}
            jdbc {
                    type => "jdbc"
                    jdbc_connection_string => "jdbc:mysql://192.168.200.100:3306/yang?characterEncoding=UTF-8&autoReconnect=true"
                     # 数据库连接账号密码;
                    jdbc_user => "root"
                    jdbc_password => "010209"
                     # MySQL依赖包路径;
                    jdbc_driver_library => "/mnt/mysql-connector-java-5.1.38.jar"
                     # the name of the driver class for mysql
                    jdbc_driver_class => "com.mysql.jdbc.Driver"
                    statement => "SELECT * FROM `im`"
            }
    }
    output {
            elasticsearch {
                     # 配置ES集群地址
                    hosts => ["192.168.200.100:9200"]
                     # 索引名字,必须小写
                    index => "im"
            }
            stdout {
            }
    }

    3、实例结果:

    [root@master bin]# ./logstash -f mysqles.conf

    4、更多选项配置如下(单表同步):

    input {
        stdin {}
        jdbc {
            type => "jdbc"
             # 数据库连接地址
            jdbc_connection_string => "jdbc:mysql://192.168.1.1:3306/TestDB?characterEncoding=UTF-8&autoReconnect=true""
             # 数据库连接账号密码;
            jdbc_user => "username"
            jdbc_password => "pwd"
             # MySQL依赖包路径;
            jdbc_driver_library => "mysql/mysql-connector-java-5.1.34.jar"
             # the name of the driver class for mysql
            jdbc_driver_class => "com.mysql.jdbc.Driver"
             # 数据库重连尝试次数
            connection_retry_attempts => "3"
             # 判断数据库连接是否可用,默认false不开启
            jdbc_validate_connection => "true"
             # 数据库连接可用校验超时时间,默认3600S
            jdbc_validation_timeout => "3600"
             # 开启分页查询(默认false不开启);
            jdbc_paging_enabled => "true"
             # 单次分页查询条数(默认100000,若字段较多且更新频率较高,建议调低此值);
            jdbc_page_size => "500"
             # statement为查询数据sql,如果sql较复杂,建议配通过statement_filepath配置sql文件的存放路径;
             # sql_last_value为内置的变量,存放上次查询结果中最后一条数据tracking_column的值,此处即为ModifyTime;
             # statement_filepath => "mysql/jdbc.sql"
            statement => "SELECT KeyId,TradeTime,OrderUserName,ModifyTime FROM `DetailTab` WHERE ModifyTime>= :sql_last_value order by ModifyTime asc"
             # 是否将字段名转换为小写,默认true(如果有数据序列化、反序列化需求,建议改为false);
            lowercase_column_names => false
             # Value can be any of: fatal,error,warn,info,debug,默认info;
            sql_log_level => warn
             #
             # 是否记录上次执行结果,true表示会将上次执行结果的tracking_column字段的值保存到last_run_metadata_path指定的文件中;
            record_last_run => true
             # 需要记录查询结果某字段的值时,此字段为true,否则默认tracking_column为timestamp的值;
            use_column_value => true
             # 需要记录的字段,用于增量同步,需是数据库字段
            tracking_column => "ModifyTime"
             # Value can be any of: numeric,timestamp,Default value is "numeric"
            tracking_column_type => timestamp
             # record_last_run上次数据存放位置;
            last_run_metadata_path => "mysql/last_id.txt"
             # 是否清除last_run_metadata_path的记录,需要增量同步时此字段必须为false;
            clean_run => false
             #
             # 同步频率(分 时 天 月 年),默认每分钟同步一次;
            schedule => "* * * * *"
        }
    }
    filter {
        json {
            source => "message"
            remove_field => ["message"]
        }
        # convert 字段类型转换,将字段TotalMoney数据类型改为float;
        mutate {
            convert => {
                "TotalMoney" => "float"
            }
        }
    }
    output {
        elasticsearch {
             # 配置ES集群地址
            hosts => ["192.168.1.1:9200", "192.168.1.2:9200", "192.168.1.3:9200"]
             # 索引名字,必须小写
            index => "consumption"
        }
        stdout {
            codec => json_lines
        }
    }

    5、多表同步:

    多表配置和单表配置的区别在于input模块的jdbc模块有几个type,output模块就需对应有几个type;

    input {
        stdin {}
        jdbc {
             # 多表同步时,表类型区分,建议命名为“库名_表名”,每个jdbc模块需对应一个type;
            type => "TestDB_DetailTab"
            
             # 其他配置此处省略,参考单表配置
             # ...
             # ...
             # record_last_run上次数据存放位置;
            last_run_metadata_path => "mysqllast_id.txt"
             # 是否清除last_run_metadata_path的记录,需要增量同步时此字段必须为false;
            clean_run => false
             #
             # 同步频率(分 时 天 月 年),默认每分钟同步一次;
            schedule => "* * * * *"
        }
        jdbc {
             # 多表同步时,表类型区分,建议命名为“库名_表名”,每个jdbc模块需对应一个type;
            type => "TestDB_Tab2"
            # 多表同步时,last_run_metadata_path配置的路径应不一致,避免有影响;
             # 其他配置此处省略
             # ...
             # ...
        }
    }
     
    filter {
        json {
            source => "message"
            remove_field => ["message"]
        }
    }
     
    output {
        # output模块的type需和jdbc模块的type一致
        if [type] == "TestDB_DetailTab" {
            elasticsearch {
                 # host => "192.168.1.1"
                 # port => "9200"
                 # 配置ES集群地址
                hosts => ["192.168.1.1:9200", "192.168.1.2:9200", "192.168.1.3:9200"]
                 # 索引名字,必须小写
                index => "detailtab1"
                 # 数据唯一索引(建议使用数据库KeyID)
                document_id => "%{KeyId}"
            }
        }
        if [type] == "TestDB_Tab2" {
            elasticsearch {
                # host => "192.168.1.1"
                # port => "9200"
                # 配置ES集群地址
                hosts => ["192.168.1.1:9200", "192.168.1.2:9200", "192.168.1.3:9200"]
                # 索引名字,必须小写
                index => "detailtab2"
                # 数据唯一索引(建议使用数据库KeyID)
                document_id => "%{KeyId}"
            }
        }
        stdout {
            codec => json_lines
        }
    }

    二、使用logstash全量同步(1分钟同步一次)mysql数据导入到elasticsearch

    配置如下:

    input {
            stdin {}
            jdbc {
                    type => "jdbc"
                    jdbc_connection_string => "jdbc:mysql://192.168.200.100:3306/yang?characterEncoding=UTF-8&autoReconnect=true"
                     # 数据库连接账号密码;
                    jdbc_user => "root"
                    jdbc_password => "010209"
                     # MySQL依赖包路径;
                    jdbc_driver_library => "/mnt/mysql-connector-java-5.1.38.jar"
                     # the name of the driver class for mysql
                    jdbc_driver_class => "com.mysql.jdbc.Driver"
                    statement => "SELECT * FROM `im`"
                    schedule => "* * * * *"
            }
    }
    output {
            elasticsearch {
                     # 配置ES集群地址
                    hosts => ["192.168.200.100:9200"]
                     # 索引名字,必须小写
                    index => "im"
            }
            stdout {
            }
    }

    第一次同步结果:

    [2019-04-25T14:39:03,194][INFO ][logstash.inputs.jdbc     ] (0.100064s) SELECT * FROM `im`
    {
          "@version" => "1",
        "@timestamp" => 2019-04-25T06:39:03.338Z,
              "type" => "jdbc",
                "id" => 3,
              "name" => "QQ"
    }
    {
          "@version" => "1",
        "@timestamp" => 2019-04-25T06:39:03.309Z,
              "type" => "jdbc",
                "id" => 2,
              "name" => "MSN"
    }

    向mysql插入数据后第二次同步:

    [2019-04-25T14:40:00,295][INFO ][logstash.inputs.jdbc     ] (0.001956s) SELECT * FROM `im`
    {
          "@version" => "1",
        "@timestamp" => 2019-04-25T06:40:00.310Z,
              "type" => "jdbc",
                "id" => 2,
              "name" => "MSN"
    }
    {
          "@version" => "1",
        "@timestamp" => 2019-04-25T06:40:00.316Z,
              "type" => "jdbc",
                "id" => 3,
              "name" => "QQ"
    }
    {
          "@version" => "1",
        "@timestamp" => 2019-04-25T06:40:00.317Z,
              "type" => "jdbc",
                "id" => 4,
              "name" => "dfs"
    }
    {
          "@version" => "1",
        "@timestamp" => 2019-04-25T06:40:00.317Z,
              "type" => "jdbc",
                "id" => 5,
              "name" => "fdf"
    }

    三、使用logstash增量同步(1分钟同步一次)mysql数据导入到elasticsearch

    input {
            stdin {}
            jdbc {
                    type => "jdbc"
                    jdbc_connection_string => "jdbc:mysql://192.168.200.100:3306/yang?characterEncoding=UTF-8&autoReconnect=true"
                    # 数据库连接账号密码;
                    jdbc_user => "root"
                    jdbc_password => "010209"
                    # MySQL依赖包路径;
                    jdbc_driver_library => "/mnt/mysql-connector-java-5.1.38.jar"
                    # the name of the driver class for mysql
                    jdbc_driver_class => "com.mysql.jdbc.Driver"
                    #是否开启分页
                    jdbc_paging_enabled => "true"
                    #分页条数
                    jdbc_page_size => "50000"
                    # 执行的sql 文件路径+名称
                    #statement_filepath => "/data/my_sql2.sql"
                    #SQL语句,也可以使用statement_filepath来指定想要执行的SQL
                    statement => "SELECT * FROM `im` where id > :sql_last_value"
                    #每一分钟做一次同步
                    schedule => "* * * * *"
                    #是否将字段名转换为小写,默认true(如果有数据序列化、反序列化需求,建议改为false)
                    lowercase_column_names => false
                    # 是否记录上次执行结果,true表示会将上次执行结果的tracking_column字段的值保存到last_run_metadata_path指定的文件中;
                    record_last_run => true
                    # 需要记录查询结果某字段的值时,此字段为true,否则默认tracking_column为timestamp的值;
                    use_column_value => true
                    # 需要记录的字段,用于增量同步,需是数据库字段
                    tracking_column => "id"
                    # record_last_run上次数据存放位置;
                    last_run_metadata_path => "/mnt/sql_last_value"
                    #是否将字段名转换为小写,默认true(如果有数据序列化、反序列化需求,建议改为false)
                    clean_run => false
            }
    }
    output {
            elasticsearch {
                     # 配置ES集群地址
                    hosts => ["192.168.200.100:9200"]
                     # 索引名字,必须小写
                    index => "im"
            }
            stdout {
            }
    }
    注意标红色的部分:这些配置是为了达到增量同步的目的,每次同步结束之后会记录最后一条数据的tracking_column列,比如我们这设置的是id,就会将这个值记录在last_run_metadata_path中。
    下次在执行同步的时候会将这个值,赋给sql_last_value

    说明:

    由于我上一次最后sql_last_value文件中记录的id为5,当向mysql插入id=6的值时,结果:

    插入id=8,7时;

    因为我插入的顺序,先插入id 为8,后插入id为7,因此最后一次记录的id为7,当我下一次插入id=9,10时,会重新导入id为8的值。

    当我插入id=10的值后,结束,观察sql_last_value文件的最后记录:

    结果:

  • 相关阅读:
    php 图片剪切
    mysql 官方docker镜像使用教程
    centos7 取消自动锁屏
    nginx配置反向代理示例
    nginx 官方docker镜像使用教程
    centos 下nginx源码编译安装
    nginx rewrite规则实例讲解
    requests.session()会话保持
    我对网络IO的理解
    日常运维--rsync同步工具
  • 原文地址:https://www.cnblogs.com/yfb918/p/10767551.html
Copyright © 2020-2023  润新知