1236题意:一个有向图,1,求至少从几个点出发可以遍历该图,2:,求至少添加多少边,使强连通。而,HDU的只有后面一问。
解;先缩点,第一问只需找所有入度为0的点即可。,第2问,max(入度为0的点,出度为0点)。也写了2个小时。。虽然1A,但是因为细节卡了,不应该。
代码详细说:
#include<iostream> //0ms 1A poj1236 #include<vector> #include<cstdio> #include<cstring> #include<stack> using namespace std; int n; vector<vector<int> >edges(101); int visited[101]; int low[101]; int dfn[101]; int ind[101];int outd[101]; //统计出入度 int Strongly_connected_branch[101]; //并为一个强连通,标记为1.2.3... int num;int times; stack<int>s; bool instack[101]; void tarjan(int u) //dfs { low[u]=dfn[u]=times++; instack[u]=1; s.push(u); int len=edges[u].size(); for(int i=0;i<len;i++) { int v=edges[u][i]; if(visited[v]==0) //小心细节! { visited[v]=1; tarjan(v); if(low[u]>low[v])low[u]=low[v]; } else if(instack[v]&&low[u]>dfn[v]) //有向图,要问是否在栈中,后向边,V为U某个祖先 { low[u]=dfn[v]; } } if(dfn[u]==low[u]) //在一个SCC { num++;int temp; do { temp=s.top(); instack[temp]=0; s.pop(); Strongly_connected_branch[temp]=num; } while(temp!=u); } } void readin() //读入数据 { scanf("%d",&n); int to; for(int i=1;i<=n;i++) { scanf("%d",&to); while(to!=0) { edges[i].push_back(to); scanf("%d",&to); } } } int ind0,outd0; void initialize() //初始化 { ind0=outd0=num=times=0; } void solve() { for(int i=1;i<=n;i++) //原图未必连通 if(visited[i]==0) { visited[i]=1; tarjan(i); } for(int i=1;i<=n;i++) //自己思得:枚举所有边,在不同scc中的,这样统计其出入度,缩点只是把所有SCC分开 { //这样统计,出入度为0的肯定没问题,但是是收缩后的图(原图中有几条边SCC间连任连几条)的出入度, int len=edges[i].size(); for(int j=0;j<len;j++) { int v=edges[i][j]; if(Strongly_connected_branch[v]!=Strongly_connected_branch[i]) { outd[Strongly_connected_branch[i]]++; ind[Strongly_connected_branch[v]]++; } } } for(int i=1;i<=num;i++) { //cout<<"out:"<<outd[i]<<"in:"<<ind[i]<<endl; if(outd[i]==0)outd0++; if(ind[i]==0)ind0++; } } int main() { readin(); initialize(); solve(); int max0=outd0; if(num==1){printf("1 0 ");return 0 ;} //如果原来就强连通,特判 if(ind0>max0)max0=ind0; printf("%d %d ",ind0,max0); return 0; }
#include<iostream> //hdu 260ms #include<vector> #include<cstdio> #include<cstring> #include<stack> using namespace std; int n;int m; vector<vector<int> >edges(20001); int visited[20001]; int low[20001]; int dfn[20001]; int ind[20001];int outd[20001]; //统计出入度 int Strongly_connected_branch[20001]; //并为一个强连通,标记为1.2.3... int num;int times; stack<int>s; bool instack[20001]; void tarjan(int u) { low[u]=dfn[u]=times++; instack[u]=1; s.push(u); int len=edges[u].size(); for(int i=0;i<len;i++) { int v=edges[u][i]; if(visited[v]==0) { visited[v]=1; tarjan(v); if(low[u]>low[v])low[u]=low[v]; } else if(instack[v]&&low[u]>dfn[v]) //有向图,要问是否在栈中,后向边,V为U某个祖先 { low[u]=dfn[v]; } } if(dfn[u]==low[u]) //在一个SCC { num++;int temp; do { temp=s.top(); instack[temp]=0; s.pop(); Strongly_connected_branch[temp]=num; } while(temp!=u); } } void readin() { scanf("%d%d",&n,&m); int from,to; for(int i=1;i<=m;i++) { scanf("%d%d",&from,&to); edges[from].push_back(to); } } int ind0,outd0; void initialize() //多组数据,必需初始化 { ind0=outd0=num=times=0; for(int i=0;i<=n;i++) { instack[i]=low[i]=dfn[i]=visited[i]=ind[i]=outd[i]=0; edges[i].clear(); Strongly_connected_branch[i]=-1; } } void solve() { for(int i=1;i<=n;i++) if(visited[i]==0) { visited[i]=1; tarjan(i); } for(int i=1;i<=n;i++) //自己思得:枚举所有边,在不同scc中的,这样统计其出入度,缩点只是把所有SCC分开 { //这样统计,出入度为0的肯定没问题,但是是收缩后的图(原图中有几条边SCC间连任连几条)的出入度, int len=edges[i].size(); for(int j=0;j<len;j++) { int v=edges[i][j]; if(Strongly_connected_branch[v]!=Strongly_connected_branch[i]) { outd[Strongly_connected_branch[i]]++; ind[Strongly_connected_branch[v]]++; } } } for(int i=1;i<=num;i++) { if(outd[i]==0)outd0++; if(ind[i]==0)ind0++; } } int main() { int tcase; scanf("%d",&tcase); while(tcase--) { initialize(); readin(); solve(); int max0=outd0; if(num==1){printf("0 ");continue;} if(ind0>max0)max0=ind0; printf("%d ",max0); } return 0; }