• HDU 2583 permutation


    permutation

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 167    Accepted Submission(s): 96

    Problem Description
    Permutation plays a very important role in Combinatorics. For example ,1 2 3 4 5 and 1 3 5 4 2 are both 5-permutations. As everyone's known, the number of n-permutations is n!. According to their magnitude relatives ,if we insert the sumbols "<" or ">"between every pairs of consecutive numbers of a permutations,we can get the permutations with symbols. For example,1 2 3 4 5 can be changed to 1<2<3<4<5, 1 3 5 4 2 can be changed to 1<3<5>4>2. Now it's yout task to calculate the number of n-permutations with k"<"symbol. Maybe you don't like large numbers ,so you should just geve the result mod 2009.
     
    Input
    Input may contai multiple test cases.
    Each test case is a line contains two integers n and k .0<n<=100 and 0<=k<=100.
    The input will terminated by EOF.
     
    Output
    The nonegative integer result mod 2007 on a line.
     
    Sample Input
    5 2
     
    Sample Output
    66
     
    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=2583
     1 #include<stdio.h>
     2 int main()
     3 {
     4       int n,k;
     5       int dp[102][102];
     6       for(int i=0;i<=101;i++)  
     7       {  
     8         dp[i][0]=1;  dp[0][i]=0;  
     9       }  
    10     for(int i=1;i<=101;i++)
    11       for(int j=1;j<=101;j++)
    12       {
    13           if(i-j==1)    dp[i][j]=1;
    14           else if(i-j>1)    dp[i][j]=( dp[i-1][j]*(j+1) + dp[i-1][j-1]*(i-j) ) % 2009;
    15           else dp[i][j]=0;    
    16       }
    17     while(scanf("%d%d",&n,&k)!=EOF) 
    18     {
    19         printf("%d
    ",dp[n][k]);
    20     }     
    21 }
    22 /*状态转移是:
    23 DP(n,k)=dp(n-1,k)*(k+1)+dp(n-1)(k-1)*(n-k)
    24 n代表考虑n个数字的状态,k代表小于号的个数。
    25 先作特殊情况,序列1 2 3 4 5 6,一共5个小于号,如果我要加入数字7,那么我有7种加法,并且只有一种加法会使小于号+1.
    26 序列a1 a2 a3 a4 a5 ……a(n-1),一共有n-1个数字,有k个小于号,那么我加入an有n种加法,
    27 其中会使小于号+1的有n-k种(就是加在大于号的位置上),其他的k+1种不会改变小于号的个数。
    28 */
  • 相关阅读:
    WM_COMMAND 和 WM_NOTIFY 的区别
    C 游戏所要看的书
    Source Insight中文字体设置
    在 windows7 中使用 vs2003 时,“在文件中查找”导致无响应的问题
    解决VS2008 调试启动特别慢
    c++ 浅谈 new 的使用
    Access界面基础操作
    与孩子一起学编程12章
    YT工作日志-0911
    两种方式遍历二叉树--递归方式和非递归方式
  • 原文地址:https://www.cnblogs.com/yeshadow937/p/3927439.html
Copyright © 2020-2023  润新知