1.如果$A_1\subseteq A_2\subseteq A_3\cdots$是可测集的增序列,那么我们有
$$m(\bigcup_{i=1}^{\infty}A_i)=\lim_{i\to\infty}m(A_i)$$
证明:首先,由$\sigma$代数性质可知$\bigcup_{i=1}^{\infty}A_i$是可测集.
看下面的不相交集合列:
$$A_0,A_1\backslash A_0,A_2\backslash A_1,A_3\backslash A_2,\cdots,A_{n+1}\backslash A_n,\cdots$$
其中$A_0=\emptyset$.
易得$$\bigcup_{i=0}^{\infty}(A_{i+1}\backslash A_i)=\bigcup_{i=0}^{\infty}A_i$$
因此$$m(\bigcup_{i=1}^{\infty}A_i)=m(\bigcup_{i=0}^{\infty}(A_{i+1}\backslash A_i))=\sum_{i=0}^{\infty}m(A_{i+1}\backslash A_i)$$(根据可测集的可数可加性).而$$\sum_{i=0}^{\infty}m(A_{i+1}\backslash A_i)=\sum_{i=0}^{\infty}(m(A_{i+1})-m(A_i))\mbox{(根据可测集的有限可加性)}=\lim_{i\to\infty}m(A_i)$$
2.如果$A_1\supseteq A_2\supseteq A_3\supseteq A_4\cdots$是可测集的减序列,且$m(A_1)<\infty$.则$$m\left(\bigcap _{j=1}^{\infty}A_j\right)=\lim_{j\to\infty}m(A_j)$$
证明:首先根据$\sigma -$代数性质知$\bigcap_{i=1}^{\infty}A_i$是可测集.
现在我要证
$$A_1\backslash\bigcup_{i=1}^{\infty}(A_i\backslash A_{i+1})=\bigcap _{i=1}^{\infty}A_i$$
证:根据摩根律,$$A_1\backslash\bigcup_{i=1}^{\infty}(A_i\backslash A_{i+1})=\bigcap_{i=1}^{\infty}\left(A_1\backslash (A_i\backslash A_{i+1})\right)$$
下面我要证$$\bigcap_{i=1}^{\infty}\left(A_1\backslash (A_i\backslash A_{i+1})\right)=\bigcap_{i=1}^{\infty}A_i$$
证明:证明是容易的.首先,我要证$\bigcap_{i=1}^{\infty}A_i\subset \bigcap_{i=1}^{\infty}(A_1\backslash (A_i\backslash A_{i+1}))$.设$x\in\bigcap_{i=1}^{\infty}A_i$,即$\forall j\in\mathbb{N}^+$,$x\in A_j$.下面我证$\forall k\in\mathbb{N}^+$,$x\in A_1\backslash (A_k\backslash A_{k+1})$.这是显然的.
所以,$$m(A_1\backslash\bigcup_{i=1}^{\infty}(A_i\backslash A_{i+1}))=m(\bigcap_{i=1}^{\infty}A_i)$$
而根据测度的有限可加性,$$m(A_1\backslash\bigcup_{i=1}^{\infty}(A_i\backslash A_{i+1}))=m(A_1)-m(\bigcup_{i=1}^{\infty}(A_i\backslash A_{i+1}))$$(由于$m(A_1)<\infty$,因此减法是有意义的.)
而由于$A_1\backslash A_2$,$A_2\backslash A_3$,$A_3\backslash A_4$,$\cdots$两两不相交,故根据1,
$$m(\bigcup_{i=1}^{\infty}(A_i\backslash A_{i+1}))=m(A_1)-\lim_{j\to\infty}(A_j)$$
故
$$m(\bigcap_{j=1}^{\infty}A_j)=m(A_1\backslash\bigcup_{i=1}^{\infty}(A_i\backslash A_{i+1}))=\lim_{j\to\infty}A_j$$