• 平面上的点和直线上的点一样多


    $\mathbb{R}^2$和$\mathbb{R}$之间可以形成双射.

    由于$\mathbb{R}^2$可以和$[0,1]\times [0,1]$形成双射,而$\mathbb{R}$可以和$[0,1]$形成双射,因此我们只用证明

     

    $[0,1]\times [0,1]$可以和$[0,1]$形成双射.

    设$A=[0,1],B=[0,1]$.我们要证明$A\times B$和$[0,1]$可以形成双射.由于$[0,1]$可以和$2^{\mathbb{N}}$形成双射,因此我们只用证明

    $A\times B$可以和$2^{\mathbb{N}}$之间形成双射.w

    首先易知存在从$2^{\mathbb{N}}$到$A\times B$的单射,根据Cantor-Bernstein-Schroeder定理,我们只用证明存在从$A\times B$到$2^{\mathbb{N}}$的单射.我们可以把$2^{\mathbb{N}}$看作所有0-1序列.我们下面来看这个图:

     

    View Code
      1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
      2 <!-- Created with Inkscape (http://www.inkscape.org/) -->
      3 
      4 <svg
      5    xmlns:dc="http://purl.org/dc/elements/1.1/"
      6    xmlns:cc="http://creativecommons.org/ns#"
      7    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
      8    xmlns:svg="http://www.w3.org/2000/svg"
      9    xmlns="http://www.w3.org/2000/svg"
     10    xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
     11    xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
     12    width="744.09448819"
     13    height="1052.3622047"
     14    id="svg2"
     15    version="1.1"
     16    inkscape:version="0.48.3.1 r9886"
     17    sodipodi:docname="New document 1">
     18   <defs
     19      id="defs4">
     20     <marker
     21        inkscape:stockid="Arrow2Lend"
     22        orient="auto"
     23        refY="0.0"
     24        refX="0.0"
     25        id="Arrow2Lend"
     26        style="overflow:visible;">
     27       <path
     28          id="path3790"
     29          style="fill-rule:evenodd;stroke-0.62500000;stroke-linejoin:round;"
     30          d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
     31          transform="scale(1.1) rotate(180) translate(1,0)" />
     32     </marker>
     33   </defs>
     34   <sodipodi:namedview
     35      id="base"
     36      pagecolor="#ffffff"
     37      bordercolor="#666666"
     38      borderopacity="1.0"
     39      inkscape:pageopacity="0.0"
     40      inkscape:pageshadow="2"
     41      inkscape:zoom="0.35"
     42      inkscape:cx="357.31741"
     43      inkscape:cy="-1422.8571"
     44      inkscape:document-units="px"
     45      inkscape:current-layer="layer1"
     46      showgrid="false"
     47      inkscape:window-width="1366"
     48      inkscape:window-height="744"
     49      inkscape:window-x="0"
     50      inkscape:window-y="24"
     51      inkscape:window-maximized="1" />
     52   <metadata
     53      id="metadata7">
     54     <rdf:RDF>
     55       <cc:Work
     56          rdf:about="">
     57         <dc:format>image/svg+xml</dc:format>
     58         <dc:type
     59            rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
     60         <dc:title></dc:title>
     61       </cc:Work>
     62     </rdf:RDF>
     63   </metadata>
     64   <g
     65      inkscape:label="Layer 1"
     66      inkscape:groupmode="layer"
     67      id="layer1">
     68     <text
     69        xml:space="preserve"
     70        style="font-size:81.87606049px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
     71        x="-1391.3318"
     72        y="1709.1561"
     73        id="text2985"
     74        sodipodi:linespacing="125%"><tspan
     75          sodipodi:role="line"
     76          id="tspan2987"
     77          x="-1391.3318"
     78          y="1709.1561">0 1 0 1 0 1 0 0 0 1 1 0  1 1 1 1 1 0... </tspan></text>
     79     <text
     80        xml:space="preserve"
     81        style="font-size:74.15922546px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
     82        x="406.93726"
     83        y="1547.5131"
     84        id="text2989"
     85        sodipodi:linespacing="125%"
     86        transform="scale(0.9054132,1.1044681)"><tspan
     87          sodipodi:role="line"
     88          id="tspan2991"
     89          x="406.93726"
     90          y="1547.5131">1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1... </tspan></text>
     91     <path
     92        style="fill:none;stroke:#000000;stroke-17.71653543;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none;marker-end:url(#Arrow2Lend)"
     93        d="M -634.28571,1769.505 28.571429,2435.2193"
     94        id="path2993"
     95        inkscape:connector-curvature="0" />
     96     <path
     97        style="fill:none;stroke:#000000;stroke-17.71653543;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;stroke-miterlimit:4;stroke-dasharray:none;marker-end:url(#Arrow2Lend)"
     98        d="M 974.28571,1769.505 351.42857,2420.9336"
     99        id="path2995"
    100        inkscape:connector-curvature="0" />
    101     <text
    102        xml:space="preserve"
    103        style="font-size:120.69830322px;font-style:normal;font-weight:normal;line-height:125%;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;font-family:Sans"
    104        x="-179.60518"
    105        y="2600.8269"
    106        id="text4209"
    107        sodipodi:linespacing="125%"><tspan
    108          sodipodi:role="line"
    109          id="tspan4211"
    110          x="-179.60518"
    111          y="2600.8269">0 1 1 0 0 1... </tspan></text>
    112   </g>
    113 </svg>

     

    以一种特定的方式构造从$2^{\mathbb{N}}\times 2^{\mathbb{N}}$到$2^{\mathbb{N}}$的单射是很容易的.完毕.

  • 相关阅读:
    大数据入门,到底要怎么学习大数据?
    大数据
    将JWT与Spring Security OAuth结合使用
    使用OAuth保护REST API并使用简单的Angular客户端
    自定义Spring Security的身份验证失败处理
    Spring Security方法级别授权使用介绍
    Nginx高并发配置思路(轻松应对1万并发量)
    Spring Security 5中的默认密码编码器
    Spring Boot Security配置教程
    Spring Security在标准登录表单中添加一个额外的字段
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827512.html
Copyright © 2020-2023  润新知