• Introduction to Differential Equations,Exercise 1.1,1.5,1.6,1.8,1.9,1.10


    As noted,if $z=x+iy$,$x,yinmathbf{R}$,then $|z|=sqrt{x^2+y^2}$ is equivalent to $|z|^2=zoverline{z}$.Use this to show that if also $winmathbf{C}$,
    $$
    |zw|=|z|cdot|w|.
    $$

    Solve:
      $|zw|^{2}=(zw)cdot
      (overline{zw})=(zw)cdot(overline{z}cdotoverline{w})=(zcdot overline{z})cdot(wcdotoverline{w})=|z|^{2}|w|^2$.


    Note that
    egin{align*}
      |z+w|^2&=(z+w)(overline{z}+overline{w})
    \&=|z|^2+|w|^2+woverline{z}+zoverline{w}
    \&=|z|^2+|w|^2+2mathbf{Re}zw.
    end{align*}
    Show that $mathbf{Re}(zw)leq |zw|$ and use this in concert with an expansion of $(|z|+|w|)^2$ and the first identity above to deduce that
    $$
    |z+w|leq |z|+|w|.
    $$



    Evaluate
    $$
    int_0^y frac{dx}{1+x^2}.
    $$


    solve:Let $x= an heta$.Then
    $$
    int_0^y frac{dx}{1+x^2}=int_0^ycos^2 heta dx=int_0^{arctan y}cos^2 heta frac{d heta}{cos^2 heta}=arctan y.
    $$


    Evaluate
    $$
    int_0^y frac{dx}{sqrt{1-x^2}}.
    $$
    Solve:Let $x=cos t$,where $tin [0,pi]$.Then

    $$int_0^y frac{dx}{sin t}=int_{frac{pi}{2}}^{arccos y}-1dt=frac{pi}{2}-arccos y.$$

    1.8 Set
    $$
    cosh t=frac{1}{2}(e^t+e^{-t}),sinh t=frac{1}{2}(e^t-e^{-t}).
    $$
    Show that
    $$
    frac{d}{dt}cosh t=sinh t,frac{d}{dt}sinh t=cosh t,
    $$
    and
    $$
    cosh^2t-sinh^2t=1.
    $$

    Proof:Simple.


    1.9 Evaluate
    $$
    int_0^y frac{dx}{sqrt{1+x^2}}.
    $$

    Solve:Let $x=sinh t$,so
    $$
    int_0^y frac{dx}{cosh t}=int_0^{sinh^{-1} y}1 dt=ln (y+sqrt{1+y^2}).
    $$


    1.10 Evaluate
    $$
    int_0^y sqrt{1+x^2}dx.
    $$

    Solve:Let $x=sinh t$,then
    $$
    int_0^y sqrt{1+x^2}dx=int_0^{ln (y+sqrt{1+y^2})} cosh^{2} t
    dt=frac{1}{2}int_0^{ln(y+sqrt{1+y^2})}(cosh 2t+1)dt=frac{y
      sqrt{1+y^2}+ln (y+sqrt{1+y^2})}{2}.
    $$

  • 相关阅读:
    反向代理实例
    nginx常用命令和配置
    nginx的安装
    Can Live View boot up images acquired from 64bit OS evidence?
    What is the behavior of lnk files?
    EnCase v7 search hits in compound files?
    How to search compound files
    iOS 8.3 JB ready
    Sunglasses
    现代福尔摩斯
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827389.html
Copyright © 2020-2023  润新知