• 过拟合与欠拟合


    过拟合与欠拟合

    目录

    一、    过拟合(overfitting)与欠拟合(underfitting    2

    1.    过拟合    3

    2.    欠拟合(高偏差)    3

    3.    偏差(Bias    3

    4.    方差(Variance    3

    二、    防止过拟合和欠拟合的方法    4

    1.    如何防止过拟合    4

    获取更多数据    4

    使用合适的模型(减少特征变量)    6

    限制权值Weight-decay,也叫正则化(regularization    6

    贝叶斯方法    6

    结合多种模型    6

    2.    如何防止欠拟合    7

    三、    L0,L1,L2正则化,也叫L0,L1,L2范数    7

    1.    正则化    10

    2.    L0正则化    11

    3.    L1正则化    11

    4.    L2正则化    11

    5.    11

    四、    如何利用贝叶斯方法防止过拟合    11

     

     

     

     

     

     

     

     

     

     

    1. 过拟合(overfitting)与欠拟合(underfitting

    首先要确定的两个概念是Underfit(欠拟合)Overfit(过拟合),也被称为high biashigh viarance。在表征线性回归模型的下面三张图中,左图使用一条直线来做预测模型,很明显无论如何调整起始点和斜率,该直线都不可能很好的拟合给定的五个训练样本,更不要说给出的新数据;右图使用了高阶的多项式,过于完美的拟合了训练样本,当给出新数据时,很可能会产生较大误差;而中间的模型则刚刚好,既较完美的拟合训练数据,又不过于复杂,基本上描绘清晰了在预测房屋价格时SizePrize的关系。

    对于逻辑回归,同样存在此问题,如下图:

    机器学习中的泛化:

    在机器学习中,我们描述从训练数据学习目标函数的学习过程成为归纳性的学习。

    泛化是指,机器学习模型学到的概念在遇到新的数据时表现的好坏(预测准确度等)。

    拟合:拟合是指你逼近目标函数的远近程度。

     

    1. 过拟合

    模型过度拟合,在训练集(training set)上表现好,但是在测试集上效果差,也就是说在已知的数据集合中非常好,但是在添加一些新的数据进来训练效果就会差很多,造成这样的原因是考虑影响因素太多,超出自变量的维度过于多了。

    1. 欠拟合(高偏差)

    模型拟合不够,在训练集(training set)上表现效果差,没有充分的利用数据,预测的准确度低。

    1. 偏差(Bias

    首先error=bias+variance

    Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精确度。

    1. 方差(Variance

    Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性

    如上图所示:偏差值的是模型的输出值与红色中心的距离;而方差指的是模型的每一个输出结果与期望之间的距离。

    就像我们射箭,低偏差指的是我们瞄准的点与红色中心的距离很近,而高偏差指的是我们瞄准的点与红色中心的距离很远。低方差是指当我们瞄准一个点后,射出的箭中靶子的位置与我们瞄准的点的位置距离比较近;高方差是指当我们瞄准一个点后,射出的箭中靶子的位置与我们瞄准的点的位置距离比较远。

     

    低偏差低方差时,是我们所追求的效果,此时预测值正中靶心(最接近真实值),且比较集中(方差小)

    低偏差高方差时,预测值基本落在真实值周围,但很分散,此时方差较大,说明模型的稳定性不够好。

    高偏差低方差时,预测值与真实值有较大距离,但此时值很集中,方差小;模型的稳定性较好,但预测准确率不高,处于"一如既往地预测不准"的状态。

    高偏差高方差时,是我们最不想看到的结果,此时模型不仅预测不准确,而且还不稳定,每次预测的值都差别比较大。

    过拟合表现为:在训练集上表现很好,但是在测试集上效果很差。

    欠拟合表现为:在训练集上表现就不太好。

    1. 防止过拟合和欠拟合的方法
    1. 如何防止过拟合

    综述:一般来说防止过拟合的方法有:

    获取更多数据减少特征变量限制权值(正则化)贝叶斯方法结合多种模型

    以深度学习中的神经网络为例,防止过拟合的方法如下:

    获取更多数据

    这是解决过拟合最有效的方法,只要给足够多的数据,让模型[训练到]尽可能多的[例外情况],它就会不断修正自己,从而得到更好的结果。

    如何获取更多的数据,可以有以下几个方法:

    从数据源头获取更多数据:这个是最容易想到的,例如物体分类,我就再多拍几张照片就好了;但是在很多情况下,大幅增加数据本身就不容易;另外,我们不清楚获取多少数据才算够用能使模型表现较好。

    根据当前数据集估计数据分布参数,使用该分布产生更多数据:这个一般不用,因为估计分布参数的过程也会带入抽样误差。

    数据增强(Data Augmentation:通过一定规则扩充数据。如在物体分类问题里,物体在图像中的位置、姿态、尺度,整体图片明暗度等都不会影响分类结果。我们就可以通过图像平移、翻转、缩放、切割等手段将数据库成倍扩充。

    使用合适的模型(减少特征变量)

    前面说了,过拟合主要使有两个原因造成的:数据太少+模型太复杂。所以我们可以通过使用合适复杂度的模型来防止过拟合问题,让其足够拟合真正的规则,同时又不至于拟合太多抽样误差。

    减少网络的层数、神经元的个数等均可以限制网络的拟合能力;

    Early stopping早停止

    对于每个神经元而言,其激活函数在不同区间的性能使不同的:

    当网络权值较小时,神经元的激活函数工作在线性区,此时神经元的拟合能力较弱(类似线性神经网络)。

    有了上述共识之后,我们就剋解释为什么限制训练时间(early stopping)有用:因为我们在初始化网络的时候一般都是初始化为较小的权值。训练时间越长,部分网络权值可能越大,如果我们在合适的时间停止训练,就可以将网络的能力限制在一定范围内。

    限制权值Weight-decay,也叫正则化(regularization

    下面第三部分会详细介绍L0,L1,L2正则化即L0,L1,L2范数。

    贝叶斯方法

    下面第四部分详细介绍如何利用贝叶斯方法防止过拟合。

    结合多种模型

    简而言之,训练多个模型,以每个模型的平均输出作为结果。

    Bagging

    简单理解,就是分段函数的概念:用不同的模型拟合不同部分的训练集。以随机森林(Rand Forests)为例,就是训练了一堆不关联的决策树。但由于训练神经网络本身需要耗费较多自由,所以一般不单独使用神经网络做Bagging

    Boosting

    既然训练复杂神经网络比较慢,那我们就可以只使用简单的神经网络(层数、神经元数限制等),通过训练一系列简单的神经网络,加权平均其输出。

    Dropout

    这是一个很高效的方法

    在训练时,每次随机(如50%概率)忽略隐藏层的某些节点;这样我们相当于随机从2^H个模型中采样选择模型.

     

    1. 如何防止欠拟合

    引入新的特征添加多项式特征减少正则化参数

    1. L0,L1,L2正则化,也叫L0,L1,L2范数

    在机器学习的概念中,我们经常听到L0,L1,L2正则化,下面我们对这几种正则化做简单介绍

    数学基础:

    范数,用||x||表示范数

    向量范数是衡量某个向量空间中向量的大小或长度;矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中向量都是有大小的,这个大小如何度量,就是用范数来度量的,不同的范数都可以来度量这个大小,就好比米和厘米都可以来度量长度一样;对于矩阵范数,学过线性代数,我们知道,通过运算AX=B,可以将向量X变化为B,矩阵范数就是来度量这个变化大小的。

    这里简单的介绍以下几种向量范数的定义和含义。

    L-P范数

    L-P范数不是一个范数,而是一组范数,其定义如下:

    根据P的变化,范数也有着不同的变化,一个经典的有关P范数的变化图如下:

    上图表示了p从无穷到0变化时,三维空间中到原点的距离(范数)为1的点构成的图形的变化情况。以常见的L-2范数(p=2)为例,此时的范数也即欧氏距离,空间中到原点的欧氏距离为1的点构成了一个球面。

     

    L0范数

    p=0时,也就是L0范数,由上面可知,L0范数并不是一个真正的范数,它主要是被用来度量向量中非零元素的个数。用上面L-P定义可以得到的L0的定义为:

    这里就有点问题了,我们知道非零元素的零次方为1,但零的零次方,非零数开零次方都是什么鬼,很不好说明L0的意义,所以在通常情况下,大家都用的是:

    表示向量x中非零元素的个数。

    对于L0范数,其优化问题为:

    即能令Ax=b成立的维度最少数量的x,即寻找一个向量,能够使Ax=b,并且x中所包含的特征比较少。在实际应用中,由于L0范数本身不容易有一个好的数学表示形式,给出上面问题的形式化表示是一个很难的问题,故被人认为是一个NP难问题。所以在实际情况中,L0的最优问题会被放宽到L1L2下的最优化。

     

    L1范数

    L1范数是我们经常见到的一种范数,它的定义如下:

    表示向量中非零元素的绝对值之和。(一个向量中非零元素的绝对值之和,例如向量[1,-1,2],它的L1范数是|1||+||-1||+||2||=4||。

    L1范数有很多的名字,例如我们熟悉的曼哈顿距离、最小绝对误差等。使用L1范数可以度量两个向量间的差异,如绝对误差和(Sum of Absolute Difference):

    对于L1范数,它的优化问题如下:

    由于L1范数的天然性质,对L1优化的解是一个稀疏解,因此L1范数也被叫做稀疏规则算子。通过L1可以实现特征的稀疏,去掉一些没有信息的特征,例如在对用户的电影爱好做分类的时候,用户有100个特征,可能只有十几个特征是对分类有用的,大部分特征如身高体重等可能都是无用的,利用L1范数就可以过滤掉。

     

    L2范数

    L2范数是我们最常用的范数了,我们用的最多的度量距离欧氏距离就是一种L2范数,它的定义如下:

    表示向量元素的平方和再开方。

    像L1范数一样,L2范数也可以度量两个向量间的差异,如平方差和(Sum of Squared Difference):

    对于L2范数,它的优化问题如下:

    L2范数通常会被用来做优化目标函数的正则化项,防止模型为了迎合训练集而过于复杂造成过拟合的情况,从而提高模型的泛化能力。

    范数

    当P= 时,也就是范数,它主要被用来度量向量元素的最大值。用上面的定义可以得到的定义为:

    与L0一样,在通常情况下,大家都用的是:

    来表示

    1.     正则化

    L0正则化的值是模型参数中非零参数的个数。

    L1正则化表示各个参数绝对值之和。

    L2正则化标识各个参数的平方的和的开方值。

    先讨论几个问题:

    1. 实现参数的稀疏有什么好处吗?

    一个好处是可以简化模型,避免过拟合。因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么可以对训练数据可以预测的很好,但是对测试数据效果可能很差。另一个好处是参数变少可以使整个模型获得更好的可解释性。

    1. 参数越小值代表模型越简单吗?

    是的。为什么参数越小,说明模型越简单呢?这是因为越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。

    1. L0正则化

    根据上面的讨论,稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的。从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可。但因为L0正则化很难求解,是个NP难问题,因此一般采用L1正则化。L1正则化是L0正则化的最优凸近似,比L0容易求解,并且也可以实现稀疏的效果。

    1. L1正则化

     

    1. L2正则化

     

    1.  
      1. 如何利用贝叶斯方法防止过拟合
  • 相关阅读:
    Java 注解
    java多线程
    webstorm配置Monokai-Sublime.jar主题
    express
    npm与package.json
    Node require方法加载规则
    js伪数组转数组
    node中的Console
    Node.js核心模块-url
    服务端渲染SSR和客户端渲染CSR
  • 原文地址:https://www.cnblogs.com/yejintianming00/p/9338917.html
Copyright © 2020-2023  润新知