gss5 Can you answer these queries V
给出数列a1...an,询问时给出:
Query(x1,y1,x2,y2) = Max { A[i]+A[i+1]+...+A[j] ; x1 <= i <= y1 , x2 j <= y2 and x1 <= x2 , y1 <= y2 }
分析:
其实画个图分类讨论一下之后,跟gss1基本一样。。。
注意到x1<=x2 , y1<=y2.
所以大致可以分为:
1.y1<x2:
直接计算区间[x1,y1]的右子区间连续最大和,[x2,y2]的左区间连续最大和,如果y1与x2之间有空隙的话,需要加上[y1+1,x2-1]的和。
2.y2>=x2:
考虑x1与x2的关系:
如果x1==x2,最大值可能出现在区间[x1,y1]的最大子段和,[x1,y1]的右区间连续最大和加上[y1+1,y2]的左区间连续最大和。
否则,考虑三个区间[x1,x2-1],[x2,y1],[y1+1,y2],这时考虑方式跟上面差不多,就不写出来了,具体可以看代码。
#include <set> #include <map> #include <list> #include <cmath> #include <queue> #include <stack> #include <string> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; #define debug puts("here") #define rep(i,n) for(int i=0;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define REP(i,a,b) for(int i=a;i<=b;i++) #define foreach(i,vec) for(unsigned i=0;i<vec.size();i++) #define pb push_back #define RD(n) scanf("%d",&n) #define RD2(x,y) scanf("%d%d",&x,&y) #define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z) #define RD4(x,y,z,w) scanf("%d%d%d%d",&x,&y,&z,&w) #define All(vec) vec.begin(),vec.end() #define MP make_pair #define PII pair<int,int> #define PQ priority_queue #define cmax(x,y) x = max(x,y) #define cmin(x,y) x = min(x,y) #define Clear(x) memset(x,0,sizeof(x)) /* #pragma comment(linker, "/STACK:1024000000,1024000000") int size = 256 << 20; // 256MB char *p = (char*)malloc(size) + size; __asm__("movl %0, %%esp " :: "r"(p) ); */ /******** program ********************/ const int MAXN = 100005; int a[MAXN]; struct segTree{ int l,r,lx,rx,mx,sum; inline int mid(){ return (l+r)>>1; } }tree[MAXN<<2]; inline void Union(segTree& now,segTree l,segTree r){ now.lx = max( l.lx , l.sum+max(0,r.lx) ); now.rx = max( r.rx , r.sum+max(0,l.rx) ); now.mx = max( l.rx+r.lx , max(l.mx,r.mx) ); now.sum = l.sum+r.sum; } void build(int l,int r,int rt){ tree[rt].l = l; tree[rt].r = r; if(l==r){ tree[rt].lx = tree[rt].rx = tree[rt].sum = tree[rt].mx = a[l]; return; } int mid = tree[rt].mid(); build(l,mid,rt<<1); build(mid+1,r,rt<<1|1); Union(tree[rt],tree[rt<<1],tree[rt<<1|1]); } void modify(int pos,int c,int rt){ if(tree[rt].l==tree[rt].r){ tree[rt].lx = tree[rt].rx = tree[rt].mx = tree[rt].sum = c; return; } int mid = tree[rt].mid(); if(pos<=mid)modify(pos,c,rt<<1); else modify(pos,c,rt<<1|1); Union(tree[rt],tree[rt<<1],tree[rt<<1|1]); } segTree ask(int l,int r,int rt){ if(l<=tree[rt].l&&r>=tree[rt].r) return tree[rt]; int mid = tree[rt].mid(); segTree ans; if(r<=mid) ans = ask(l,r,rt<<1); else if(l>mid) ans = ask(l,r,rt<<1|1); else{ segTree a = ask(l,r,rt<<1); segTree b = ask(l,r,rt<<1|1); Union( ans,a,b ); } Union(tree[rt],tree[rt<<1],tree[rt<<1|1]); return ans; } int main(){ #ifndef ONLINE_JUDGE freopen("sum.in","r",stdin); //freopen("sum.out","w",stdout); #endif int m,n,x,y,c,d; int ncase; RD(ncase); while(ncase--){ RD(n); rep1(i,n) RD(a[i]); build(1,n,1); RD(m); segTree ca,cb,cc; while(m--){ RD4(x,y,c,d); int sum = 0; if(y>=c){ if(x<c){ ca = ask(x,c-1,1); cb = ask(c,y,1); sum = max( ca.rx+cb.lx,cb.mx ); if(y<d){ cc = ask(y+1,d,1); int tmp = max( max(0,ca.rx)+cb.sum+cc.lx , cb.rx+cc.lx ); sum = max( sum,tmp ); } }else{ ca = ask(c,y,1); sum = ca.mx; if(y<d){ cc = ask(y+1,d,1); sum = max(sum,ca.rx+cc.lx); } } }else{ ca = ask(x,y,1); cb = ask(c,d,1); sum = ca.rx+cb.lx; if(y+1<c){ cc = ask(y+1,c-1,1); sum += cc.sum; } } printf("%d ",sum); } } return 0; }