• pandas之数据重塑与透视


    数据重塑与透视

    •数据重塑

    数据重塑表示转换一个表格或者向量的结构,使其适合于进一步的分析。

    1、pivot:将长格式旋转为宽格式,多用于时间序列。

    data.pivot(index=None, columns=None, values=None)

    下面举个例子就一目了然了:

    now=datetime.now().date()
    date=[now-timedelta(days=i) for i in range(6)]*5#列表生成器生成今天到过去五天
    group=["A"]*6+["B"]*6+["C"]*6+["D"]*6+["E"]*6
    sells=np.random.randint(100,1000,size=(30))#生成100-1000之间的30个随机数
    data=pd.DataFrame({"date":date,"group":group,"sells":sells})
    data.sort_values(["group","date"])

      

    1 dp=data.pivot(index="date",columns="group",values="sells")
    2 dp

    注意:使用pivot时不能有index和cloumns同时相等的

    •Stack/Unstack

    Stack/Unstack与pivot相比是需要在层次索引上操作,即stack将列变为索引(数据变长了),unstack将索引变为列(数据变宽了)。

    1 ds=dp.stack()
    2 ds
    date        group
    2020-07-30  A        572
                B        989
                C        641
                D        866
                E        191
    2020-07-31  A        366
                B        146
                C        592
                D        872
                E        445
    2020-08-01  A        886
                B        579
    .......
    1 ds.index#可知把列变为索引了
    MultiIndex([(2020-07-30, 'A'),
                (2020-07-30, 'B'),
                (2020-07-30, 'C'),
                (2020-07-30, 'D'),
                (2020-07-30, 'E'),
                (2020-07-31, 'A'),
                (2020-07-31, 'B'),
                (2020-07-31, 'C'),
                (2020-07-31, 'D'),

                          ..........

    unstack将数据变宽

    1 ds.unstack(1)#默认把最内层索引变为列

    •melt

    d1.melt(id_vars=None,value_vars=None,var_name=None,value_name='value', col_level=None,)

    id_vars [元组,列表或ndarray,可选]:用作标识符变量的列。
    value_vars [元组,列表或ndarray,可选]:要取消透视的列。如果未指定,则使用未设置为id_vars的所有列。
    var_name [标量]:用于“变量”列的名称。如果为None,则使用frame.columns.name或“ variable”。
    value_name [标量,默认为“值”]:用于“值”列的名称。
    col_level [int或字符串,可选]:如果列是MultiIndex,则使用此级别进行融合。

    melt()函数很有用,可以将DataFrame压缩为一种格式,其中一列或多列是标识符变量,而所有其他列(被视为测量变量)都不会旋转到行轴,仅留下两个非标识符列,变量和值。简而言之将宽表压缩为长表,可以看成pivot的逆运算。

    1 d1=pd.DataFrame(np.random.randn(5,3),index=range(2,7),columns=["a","b","c"])
    2 d1

    1 d1.melt(id_vars=["a"],value_vars=["b","c"])

    •透视表与交叉表

    pivot_table

     

    1 data.pivot_table(index="date",columns="group",values="sells",aggfunc=[np.mean,np.sum])

    index也可以为多个

    1 导入pandas和numpy库
    2 import pandas as pd
    3 import numpy as np
    4 from pandas import Series,DataFrame 
    5 test=pd.read_excel("/Users/yaozhilin/Downloads/exercise.xlsx",sep="t")
    6 test.head(5)#显示前五行

    1 pd.pivot_table(test,index=["所属区域","产品类别"],values=["数量","金额"],aggfunc=np.mean)

     

    交叉表

    cross-tabulation是一种用于计算分组频率的特殊透视表

    1 pd.crosstab(test["所属区域"],test["产品类别"])

    1 pd.crosstab([test["所属区域"],test["产品类别"]],test["数量"],margins=True)

  • 相关阅读:
    adb shell am pm 用法
    HTML的属性和css基础
    HTML的实际演练2
    HTML的实际演练1
    HTML的标签简介
    HTML的基础知识
    Python之 ---成员修饰符
    Python基础之-----------函数
    Python之-------基础数据类型
    Python之内置函数
  • 原文地址:https://www.cnblogs.com/ye20190812/p/13434901.html
Copyright © 2020-2023  润新知