• PDF电子发票内容提取


    原文地址:PDF电子发票内容提取

    摘要

    本文介绍如何提取PDF版电子发票的内容。

    1. 加载内容

    首先使用Python的pdfplumber库读入内容。

    FILE=r"data/test-2.pdf"
    pdf=pb.open(FILE)
    page=pdf.pages[0]
    

    接着读取内容并提取线段。

    words=page.extract_words(x_tolerance=5)
    lines=page.lines # 获取线段(不包括边框线)
    for word in words:
        print(word)
    # 坐标换算
    for index,word in enumerate(words):
        words[index]["y0"]=word["top"]
        words[index]["y1"]=word["bottom"]
    for index,line in enumerate(lines):
        lines[index]["x1"]=line["x0"]+line["width"]
        lines[index]["y0"]=line["top"]
        lines[index]["y1"]=line["bottom"]
    

    2. 还原表格

    为了将内容划分到合理的位置,需要还原出表格。

    首先,把线段分类为横线和竖线,并且剔除较短的两根。

    hlines=[line for line in lines if line["width"]>0] # 筛选横线
    hlines=sorted(hlines,key=lambda h:h["width"],reverse=True)[:-2] #剔除较短的两根
    
    vlines=[line for line in lines if line["height"]>0] #筛选竖线
    vlines=sorted(vlines,key=lambda v:v["y0"]) #按照坐标排列
    

    将线段展示出来如下图。

    初始表格

    此时的线段是不闭合的,将缺少的线段补齐得到表格如下。

    # 查找边框顶点
    hx0=hlines[0]["x0"] # 左侧
    hx1=hlines[0]["x1"] # 右侧
    vy0=vlines[0]["y0"] # 顶部
    vy1=vlines[-1]["y1"] # 底部
    
    thline={"x0":hx0,"y0":vy0,"x1":hx1,"y1":vy0} # 顶部横线
    bhline={"x0":hx0,"y0":vy1,"x1":hx1,"y1":vy1} # 底部横线
    lvline={"x0":hx0,"y0":vy0,"x1":hx0,"y1":vy1} # 左侧竖线
    rvline={"x0":hx1,"y0":vy0,"x1":hx1,"y1":vy1} # 右侧竖线
    
    hlines.insert(0,thline)
    hlines.append(bhline)
    
    vlines.insert(0,lvline)
    vlines.append(rvline)
    

    补齐缺失线段

    接下来,查找所有线段的交点:

    # 查找所有交点
    points=[]
    
    delta=1
    for vline in vlines:
        vx0=vline["x0"]
        vy0=vline["y0"]
        vx1=vline["x1"]
        vy1=vline["y1"]    
        for hline in hlines:
            hx0=hline["x0"]
            hy0=hline["y0"]
            hx1=hline["x1"]
            hy1=hline["y1"]        
            if (hx0-delta)<=vx0<=(hx1+delta) and (vy0-delta)<=hy0<=(vy1+delta):
                points.append((int(vx0),int(hy0)))
    print('所有交点:',points)
    print('交点总计:',len(points))
    

    线段交点

    最后,根据交点构建矩形块

    # 构造矩阵
    X=sorted(set([int(p[0]) for p in points]))
    Y=sorted(set([int(p[1]) for p in points]))
    
    df=pd.DataFrame(index=Y,columns=X)
    for p in points:
        x,y=int(p[0]),int(p[1])
        df.loc[y,x]=1
    df=df.fillna(0)
    
    # 寻找矩形
    rects=[]
    COLS=len(df.columns)-1
    ROWS=len(df.index)-1
    
    for row in range(ROWS):
        for col in range(COLS):
            p0=df.iat[row,col] # 主点:必能构造一个矩阵
            cnt=col+1
            while cnt<=COLS:
                p1=df.iat[row,cnt]
                p2=df.iat[row+1,col]
                p3=df.iat[row+1,cnt]
                if p0 and p1 and p2 and p3:
                    rects.append(((df.columns[col],df.index[row]),(df.columns[cnt],df.index[row]),(df.columns[col],df.index[row+1]),(df.columns[cnt],df.index[row+1])))
                    break
                else:
                    cnt+=1
    print(len(rects))
    for r in rects:
        print(r)
    

    构造矩阵

    3.将单词放入矩形框

    首先,在表格中查看一下单词的位置

    单词位置

    接下来,将内容放入到矩形框中

    # 判断点是否在矩形内
    def inRect(point,rect):
        px,py=point
        p1,p2,p3,p4=rect
        if p1[0]<=px<=p2[0] and p1[1]<=py<=p3[1]:
            return True
        else:
            return False
    
    # 将words按照坐标层级放入矩阵中
    groups={}
    delta=2
    for word in words:
        p=(int(word["x0"]),int((word["y0"]+word["y1"])/2))
        flag=False
        for r in rects:
            if inRect(p,r):
                flag=True
                groups[("IN",r[0][1],r)]=groups.get(("IN",r[0][1],r),[])+[word]
                break
        if not flag:
            y_range=[p[1]+x for x in range(delta)]+[p[1]-x for x in range(delta)]
            out_ys=[k[1] for k in list(groups.keys()) if k[0]=="OUT"]
            flag=False
            for y in set(y_range):
                if y in out_ys:
                    v=out_ys[out_ys.index(y)]
                    groups[("OUT",v)].append(word)
                    flag=True
                    break
            if not flag:
                groups[("OUT",p[1])]=[word]
    
    # 按照y坐标排序
    keys=sorted(groups.keys(),key=lambda k:k[1])
    for k in keys:
        g=groups[k]
        print(k,[w["text"] for w in g])
        print("*-*-"*20)
    

    4. 结果及代码

    最后,提取得到结果:

    结果

    上图原样本示例:

    样本

    最后,将代码封装整理为类:

    
    class Extractor(object):
        def __init__(self, path):
            self.file = path if os.path.isfile else None
    
        def _load_data(self):
            if self.file and os.path.splitext(self.file)[1] == '.pdf':
                pdf = pb.open(self.file)
                page = pdf.pages[0]
                words = page.extract_words(x_tolerance=5)
                lines = page.lines
                # convert coordination
                for index, word in enumerate(words):
                    words[index]['y0'] = word['top']
                    words[index]['y1'] = word['bottom']
                for index, line in enumerate(lines):
                    lines[index]['x1'] = line['x0']+line['width']
                    lines[index]['y0'] = line['top']
                    lines[index]['y1'] = line['bottom']
                return {'words': words, 'lines': lines}
            else:
                print("file %s cann't be opened." % self.file)
                return None
    
        def _fill_line(self, lines):
            hlines = [line for line in lines if line['width'] > 0]  # 筛选横线
            hlines = sorted(hlines, key=lambda h: h['width'], reverse=True)[:-2]  # 剔除较短的两根
            vlines = [line for line in lines if line['height'] > 0]  # 筛选竖线
            vlines = sorted(vlines, key=lambda v: v['y0'])  # 按照坐标排列
            # 查找边框顶点
            hx0 = hlines[0]['x0']  # 左侧
            hx1 = hlines[0]['x1']  # 右侧
            vy0 = vlines[0]['y0']  # 顶部
            vy1 = vlines[-1]['y1']  # 底部
    
            thline = {'x0': hx0, 'y0': vy0, 'x1': hx1, 'y1': vy0}  # 顶部横线
            bhline = {'x0': hx0, 'y0': vy1, 'x1': hx1, 'y1': vy1}  # 底部横线
            lvline = {'x0': hx0, 'y0': vy0, 'x1': hx0, 'y1': vy1}  # 左侧竖线
            rvline = {'x0': hx1, 'y0': vy0, 'x1': hx1, 'y1': vy1}  # 右侧竖线
    
            hlines.insert(0, thline)
            hlines.append(bhline)
            vlines.insert(0, lvline)
            vlines.append(rvline)
            return {'hlines': hlines, 'vlines': vlines}
    
        def _is_point_in_rect(self, point, rect):
            '''判断点是否在矩形内'''
            px, py = point
            p1, p2, p3, p4 = rect
            if p1[0] <= px <= p2[0] and p1[1] <= py <= p3[1]:
                return True
            else:
                return False
    
        def _find_cross_points(self, hlines, vlines):
            points = []
            delta = 1
            for vline in vlines:
                vx0 = vline['x0']
                vy0 = vline['y0']
                vy1 = vline['y1']
                for hline in hlines:
                    hx0 = hline['x0']
                    hy0 = hline['y0']
                    hx1 = hline['x1']
                    if (hx0-delta) <= vx0 <= (hx1+delta) and (vy0-delta) <= hy0 <= (vy1+delta):
                        points.append((int(vx0), int(hy0)))
            return points
    
        def _find_rects(self, cross_points):
            # 构造矩阵
            X = sorted(set([int(p[0]) for p in cross_points]))
            Y = sorted(set([int(p[1]) for p in cross_points]))
            df = pd.DataFrame(index=Y, columns=X)
            for p in cross_points:
                x, y = int(p[0]), int(p[1])
                df.loc[y, x] = 1
            df = df.fillna(0)
            # 寻找矩形
            rects = []
            COLS = len(df.columns)-1
            ROWS = len(df.index)-1
            for row in range(ROWS):
                for col in range(COLS):
                    p0 = df.iat[row, col]  # 主点:必能构造一个矩阵
                    cnt = col+1
                    while cnt <= COLS:
                        p1 = df.iat[row, cnt]
                        p2 = df.iat[row+1, col]
                        p3 = df.iat[row+1, cnt]
                        if p0 and p1 and p2 and p3:
                            rects.append(((df.columns[col], df.index[row]), (df.columns[cnt], df.index[row]), (
                                df.columns[col], df.index[row+1]), (df.columns[cnt], df.index[row+1])))
                            break
                        else:
                            cnt += 1
            return rects
    
        def _put_words_into_rect(self, words, rects):
            # 将words按照坐标层级放入矩阵中
            groups = {}
            delta = 2
            for word in words:
                p = (int(word['x0']), int((word['y0']+word['y1'])/2))
                flag = False
                for r in rects:
                    if self._is_point_in_rect(p, r):
                        flag = True
                        groups[('IN', r[0][1], r)] = groups.get(
                            ('IN', r[0][1], r), [])+[word]
                        break
                if not flag:
                    y_range = [
                        p[1]+x for x in range(delta)]+[p[1]-x for x in range(delta)]
                    out_ys = [k[1] for k in list(groups.keys()) if k[0] == 'OUT']
                    flag = False
                    for y in set(y_range):
                        if y in out_ys:
                            v = out_ys[out_ys.index(y)]
                            groups[('OUT', v)].append(word)
                            flag = True
                            break
                    if not flag:
                        groups[('OUT', p[1])] = [word]
            return groups
    
        def _find_text_by_same_line(self, group, delta=1):
            words = {}
            group = sorted(group, key=lambda x: x['x0'])
            for w in group:
                bottom = int(w['bottom'])
                text = w['text']
                k1 = [bottom-i for i in range(delta)]
                k2 = [bottom+i for i in range(delta)]
                k = set(k1+k2)
                flag = False
                for kk in k:
                    if kk in words:
                        words[kk] = words.get(kk, '')+text
                        flag = True
                        break
                if not flag:
                    words[bottom] = words.get(bottom, '')+text
            return words
    
        def _split_words_into_diff_line(self, groups):
            groups2 = {}
            for k, g in groups.items():
                words = self._find_text_by_same_line(g, 3)
                groups2[k] = words
            return groups2
    
        def _index_of_y(self, x, rects):
            for index, r in enumerate(rects):
                if x == r[2][0][0]:
                    return index+1 if index+1 < len(rects) else None
            return None
    
        def _find_outer(self, k, words):
            df = pd.DataFrame()
            for pos, text in words.items():
                if re.search(r'发票$', text):  # 发票名称
                    df.loc[0, '发票名称'] = text
                elif re.search(r'发票代码', text):  # 发票代码
                    num = ''.join(re.findall(r'[0-9]+', text))
                    df.loc[0, '发票代码'] = num
                elif re.search(r'发票号码', text):  # 发票号码
                    num = ''.join(re.findall(r'[0-9]+', text))
                    df.loc[0, '发票号码'] = num
                elif re.search(r'开票日期', text):  # 开票日期
                    date = ''.join(re.findall(
                        r'[0-9]{4}年[0-9]{1,2}月[0-9]{1,2}日', text))
                    df.loc[0, '开票日期'] = date
                elif '机器编号' in text and '校验码' in text:  # 校验码
                    text1 = re.search(r'校验码:d+', text)[0]
                    num = ''.join(re.findall(r'[0-9]+', text1))
                    df.loc[0, '校验码'] = num
                    text2 = re.search(r'机器编号:d+', text)[0]
                    num = ''.join(re.findall(r'[0-9]+', text2))
                    df.loc[0, '机器编号'] = num
                elif '机器编号' in text:
                    num = ''.join(re.findall(r'[0-9]+', text))
                    df.loc[0, '机器编号'] = num
                elif '校验码' in text:
                    num = ''.join(re.findall(r'[0-9]+', text))
                    df.loc[0, '校验码'] = num
                elif re.search(r'收款人', text):
                    items = re.split(r'收款人:|复核:|开票人:|销售方:', text)
                    items = [item for item in items if re.sub(
                        r's+', '', item) != '']
                    df.loc[0, '收款人'] = items[0] if items and len(items) > 0 else ''
                    df.loc[0, '复核'] = items[1] if items and len(items) > 1 else ''
                    df.loc[0, '开票人'] = items[2] if items and len(items) > 2 else ''
                    df.loc[0, '销售方'] = items[3] if items and len(items) > 3 else ''
            return df
    
        def _find_and_sort_rect_in_same_line(self, y, groups):
            same_rects_k = [k for k, v in groups.items() if k[1] == y]
            return sorted(same_rects_k, key=lambda x: x[2][0][0])
    
        def _find_inner(self, k, words, groups, groups2, free_zone_flag=False):
            df = pd.DataFrame()
            sort_words = sorted(words.items(), key=lambda x: x[0])
            text = [word for k, word in sort_words]
            context = ''.join(text)
            if '购买方' in context or '销售方' in context:
                y = k[1]
                x = k[2][0][0]
                same_rects_k = self._find_and_sort_rect_in_same_line(y, groups)
                target_index = self._index_of_y(x, same_rects_k)
                target_k = same_rects_k[target_index]
                group_context = groups2[target_k]
                prefix = '购买方' if '购买方' in context else '销售方'
                for pos, text in group_context.items():
                    if '名称' in text:
                        name = re.sub(r'名称:', '', text)
                        df.loc[0, prefix+'名称'] = name
                    elif '纳税人识别号' in text:
                        tax_man_id = re.sub(r'纳税人识别号:', '', text)
                        df.loc[0, prefix+'纳税人识别号'] = tax_man_id
                    elif '地址、电话' in text:
                        addr = re.sub(r'地址、电话:', '', text)
                        df.loc[0, prefix+'地址电话'] = addr
                    elif '开户行及账号' in text:
                        account = re.sub(r'开户行及账号:', '', text)
                        df.loc[0, prefix+'开户行及账号'] = account
            elif '密码区' in context:
                y = k[1]
                x = k[2][0][0]
                same_rects_k = self._find_and_sort_rect_in_same_line(y, groups)
                target_index = self._index_of_y(x, same_rects_k)
                target_k = same_rects_k[target_index]
                words = groups2[target_k]
                context = [v for k, v in words.items()]
                context = ''.join(context)
                df.loc[0, '密码区'] = context
            elif '价税合计' in context:
                y = k[1]
                x = k[2][0][0]
                same_rects_k = self._find_and_sort_rect_in_same_line(y, groups)
                target_index = self._index_of_y(x, same_rects_k)
                target_k = same_rects_k[target_index]
                group_words = groups2[target_k]
                group_context = ''.join([w for k, w in group_words.items()])
                items = re.split(r'[((]小写[))]', group_context)
                b = items[0] if items and len(items) > 0 else ''
                s = items[1] if items and len(items) > 1 else ''
                df.loc[0, '价税合计(大写)'] = b
                df.loc[0, '价税合计(小写)'] = s
            elif '备注' in context:
                y = k[1]
                x = k[2][0][0]
                same_rects_k = self._find_and_sort_rect_in_same_line(y, groups)
                target_index = self._index_of_y(x, same_rects_k)
                if target_index:
                    target_k = same_rects_k[target_index]
                    group_words = groups2[target_k]
                    group_context = ''.join([w for k, w in group_words.items()])
                    df.loc[0, '备注'] = group_context
                else:
                    df.loc[0, '备注'] = ''
            else:
                if free_zone_flag:
                    return df, free_zone_flag
                y = k[1]
                x = k[2][0][0]
                same_rects_k = self._find_and_sort_rect_in_same_line(y, groups)
                if len(same_rects_k) == 8:
                    free_zone_flag = True
                    for kk in same_rects_k:
                        yy = kk[1]
                        xx = kk[2][0][0]
                        words = groups2[kk]
                        words = sorted(words.items(), key=lambda x: x[0]) if words and len(
                            words) > 0 else None
                        key = words[0][1] if words and len(words) > 0 else None
                        val = [word[1] for word in words[1:]
                               ] if key and words and len(words) > 1 else ''
                        val = '
    '.join(val) if val else ''
                        if key:
                            df.loc[0, key] = val
            return df, free_zone_flag
    
        def extract(self):
            data = self._load_data()
            words = data['words']
            lines = data['lines']
    
            lines = self._fill_line(lines)
            hlines = lines['hlines']
            vlines = lines['vlines']
    
            cross_points = self._find_cross_points(hlines, vlines)
            rects = self._find_rects(cross_points)
    
            word_groups = self._put_words_into_rect(words, rects)
            word_groups2 = self._split_words_into_diff_line(word_groups)
    
            df = pd.DataFrame()
            free_zone_flag = False
            for k, words in word_groups2.items():
                if k[0] == 'OUT':
                    df_item = self._find_outer(k, words)
                else:
                    df_item, free_zone_flag = self._find_inner(
                        k, words, word_groups, word_groups2, free_zone_flag)
                df = pd.concat([df, df_item], axis=1)
            return df
    
    if __name__=="__main__":
        path=r'data.pdf'
        data = Extractor(path).extract()
        print(data)
    
  • 相关阅读:
    配置数据同步
    NET移动设备开发
    计算两个日期之间的工作日数
    ActionScript3.0程序开发工具
    常用JS积累之获取节点高度(基于浏览器)
    推荐40个优秀的免费CSS工具
    #include语法
    CSS3属性boxshadow使用教程
    CSS元素背景透明
    js获取网页高度
  • 原文地址:https://www.cnblogs.com/yczha/p/13160219.html
Copyright © 2020-2023  润新知