题目:
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。
示例 2:
输入: "cbbd"
输出: "bb"
知道题网上有很多种解法,比如Manacher算法就是专门解决知道题的,还有中心扩散法,小编比较水就给大家讲讲动态规划吧!
dp的话,主要就是推出dp方程:以上是具体步骤,
注意下文中, s[l, r] 表示原始字符串的一个子串,l、r 分别是区间的左右边界的索引值,使用左闭、右闭区间表示左右边界可以取到。举个例子,当 s = 'babad' 时,s[0, 1] = 'ba' ,s[2, 4] = 'bad'。
1、定义 “状态”,这里 “状态”数组是二维数组。(因为要定义左右两边的边界所以用二维数组定义每一种状态)
dp[l][r] 表示子串 s[l, r](包括区间左右端点)是否构成回文串,是一个二维布尔型数组。即如果子串 s[l, r] 是回文串,那么 dp[l][r] = true。
2、找到 “状态转移方程”。
首先,我们很清楚一个事实:
1、当子串只包含 111 个字符,它一定是回文子串;
2、当子串包含 2 个以上字符的时候:如果 s[l, r] 是一个回文串,例如 “abccba”,那么这个回文串两边各往里面收缩一个字符(如果可以的话)的子串 s[l + 1, r - 1] 也一定是回文串,即:如果 dp[l][r] == true 成立,一定有 dp[l + 1][r - 1] = true 成立。
根据这一点,我们可以知道,给出一个子串 s[l, r] ,如果 s[l] != s[r],那么这个子串就一定不是回文串。如果 s[l] == s[r] 成立,就接着判断 s[l + 1] 与 s[r - 1],这很像中心扩散法的逆方法。
事实上,当 s[l] == s[r] 成立的时候,dp[l][r] 的值由 dp[l + 1][r - l] 决定,这一点也不难思考:当左右边界字符串相等的时候,整个字符串是否是回文就完全由“原字符串去掉左右边界”的子串是否回文决定。但是这里还需要再多考虑一点点:“原字符串去掉左右边界”的子串的边界情况。
1、当原字符串的元素个数为 333 个的时候,如果左右边界相等,那么去掉它们以后,只剩下 111 个字符,它一定是回文串,故原字符串也一定是回文串;
2、当原字符串的元素个数为 222 个的时候,如果左右边界相等,那么去掉它们以后,只剩下 000 个字符,显然原字符串也一定是回文串。
把上面两点归纳一下,只要 s[l + 1, r - 1] 至少包含两个元素,就有必要继续做判断,否则直接根据左右边界是否相等就能得到原字符串的回文性。而“s[l + 1, r - 1] 至少包含两个元素”等价于 l + 1 < r - 1,整理得 l - r < -2,或者 r - l > 2。
综上,如果一个字符串的左右边界相等,以下二者之一成立即可:
1、去掉左右边界以后的字符串不构成区间,即“ s[l + 1, r - 1] 至少包含两个元素”的反面,即 l - r >= -2,或者 r - l <= 2;
2、去掉左右边界以后的字符串是回文串,具体说,它的回文性决定了原字符串的回文性。
于是整理成“状态转移方程”:
dp[l, r] = (s[l] == s[r] and (l - r >= -2 or dp[l + 1, r - 1])) 或者 dp[l, r] = (s[l] == s[r] and (r - l <= 2 or dp[l + 1, r - 1]))
编码实现细节:因为要构成子串 l 一定小于等于 r ,我们只关心 “状态”数组“上三角”的那部分取值。理解上面的“状态转移方程”中的 (r - l <= 2 or dp[l + 1, r - 1]) 这部分是关键,因为 or 是短路运算,因此,如果收缩以后不构成区间,那么就没有必要看继续 dp[l + 1, r - 1] 的取值。
string longestPalindrome(string str)
{
if (str.length() <= 1)
return str;
int len = str.length();
string longstr = str.substr(0, 1);
bool **dp = new bool*[len];
for (int i = 0; i<len; i++)
dp[i] = new bool[len];
int max = 1;
int l = 0, r = 1; //abc1234321ab
for (r = 1; r < len; r++)
{
for (l = 0;l<r; l++)
{
if ((str[l] == str[r]) && (r - l <= 2 || dp[l + 1][r - 1]))
{
dp[l][r] = true;
if (r - l + 1 > max)
{
max = r - l + 1;
//cout << r << endl;
longstr = str.substr(l, r - l + 1);//第一个参数是子串起始位置,第二个参数是字串长度
//cout << longstr << endl;
}
}
//else
//dp[l][r] = false;
}
}
for (int i = 0; i < len; i++)
{
delete[] dp[i];
dp[i] = NULL;
}
delete[] dp;
dp = NULL;
return longstr;
}
复杂度分析:
时间复杂度:O(N2)O(N^{2})O(N2)。
空间复杂度:O(N2)O(N^{2})O(N2),二维 dp 问题,一个状态得用二维有序数对表示,因此空间复杂度是 O(N2)O(N^{2})O(N2)。