关于OpenCV图像拼接的方法,如果不熟悉的话,可以先看看我整理的如下四篇博客:
-
OpenCV常用图像拼接方法(一):直接拼接(硬拼)
-
OpenCV常用图像拼接方法(二):基于模板匹配拼接
-
OpenCV常用图像拼接方法(三):基于特征匹配拼接
-
OpenCV常用图像拼接方法(四):基于Stitcher类拼接
本篇博客是Stitcher类的扩展介绍,通过例程stitching_detailed.cpp的使用和参数介绍,帮助大家了解Stitcher类拼接的具体步骤和方法,先看看其内部的流程结构图(如下):
stitching_detailed.cpp目录如下,可以在自己安装的OpenCV目录下找到,笔者这里使用的OpenCV4.4版本
stitching_detailed.cpp具体源码如下:
1 // 05_Image_Stitch_Stitching_Detailed.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
2 //
3 #include "pch.h"
4 #include <iostream>
5 #include <fstream>
6 #include <string>
7 #include "opencv2/opencv_modules.hpp"
8 #include <opencv2/core/utility.hpp>
9 #include "opencv2/imgcodecs.hpp"
10 #include "opencv2/highgui.hpp"
11 #include "opencv2/stitching/detail/autocalib.hpp"
12 #include "opencv2/stitching/detail/blenders.hpp"
13 #include "opencv2/stitching/detail/timelapsers.hpp"
14 #include "opencv2/stitching/detail/camera.hpp"
15 #include "opencv2/stitching/detail/exposure_compensate.hpp"
16 #include "opencv2/stitching/detail/matchers.hpp"
17 #include "opencv2/stitching/detail/motion_estimators.hpp"
18 #include "opencv2/stitching/detail/seam_finders.hpp"
19 #include "opencv2/stitching/detail/warpers.hpp"
20 #include "opencv2/stitching/warpers.hpp"
21
22 #ifdef HAVE_OPENCV_XFEATURES2D
23 #include "opencv2/xfeatures2d.hpp"
24 #include "opencv2/xfeatures2d/nonfree.hpp"
25 #endif
26
27 #define ENABLE_LOG 1
28 #define LOG(msg) std::cout << msg
29 #define LOGLN(msg) std::cout << msg << std::endl
30
31 using namespace std;
32 using namespace cv;
33 using namespace cv::detail;
34
35 static void printUsage(char** argv)
36 {
37 cout <<
38 "Rotation model images stitcher.
"
39 << argv[0] << " img1 img2 [...imgN] [flags]
"
40 "Flags:
"
41 " --preview
"
42 " Run stitching in the preview mode. Works faster than usual mode,
"
43 " but output image will have lower resolution.
"
44 " --try_cuda (yes|no)
"
45 " Try to use CUDA. The default value is 'no'. All default values
"
46 " are for CPU mode.
"
47 "
Motion Estimation Flags:
"
48 " --work_megapix <float>
"
49 " Resolution for image registration step. The default is 0.6 Mpx.
"
50 " --features (surf|orb|sift|akaze)
"
51 " Type of features used for images matching.
"
52 " The default is surf if available, orb otherwise.
"
53 " --matcher (homography|affine)
"
54 " Matcher used for pairwise image matching.
"
55 " --estimator (homography|affine)
"
56 " Type of estimator used for transformation estimation.
"
57 " --match_conf <float>
"
58 " Confidence for feature matching step. The default is 0.65 for surf and 0.3 for orb.
"
59 " --conf_thresh <float>
"
60 " Threshold for two images are from the same panorama confidence.
"
61 " The default is 1.0.
"
62 " --ba (no|reproj|ray|affine)
"
63 " Bundle adjustment cost function. The default is ray.
"
64 " --ba_refine_mask (mask)
"
65 " Set refinement mask for bundle adjustment. It looks like 'x_xxx',
"
66 " where 'x' means refine respective parameter and '_' means don't
"
67 " refine one, and has the following format:
"
68 " <fx><skew><ppx><aspect><ppy>. The default mask is 'xxxxx'. If bundle
"
69 " adjustment doesn't support estimation of selected parameter then
"
70 " the respective flag is ignored.
"
71 " --wave_correct (no|horiz|vert)
"
72 " Perform wave effect correction. The default is 'horiz'.
"
73 " --save_graph <file_name>
"
74 " Save matches graph represented in DOT language to <file_name> file.
"
75 " Labels description: Nm is number of matches, Ni is number of inliers,
"
76 " C is confidence.
"
77 "
Compositing Flags:
"
78 " --warp (affine|plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPlaneA1.5B1|compressedPlanePortraitA2B1|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPortraitA1.5B1|mercator|transverseMercator)
"
79 " Warp surface type. The default is 'spherical'.
"
80 " --seam_megapix <float>
"
81 " Resolution for seam estimation step. The default is 0.1 Mpx.
"
82 " --seam (no|voronoi|gc_color|gc_colorgrad)
"
83 " Seam estimation method. The default is 'gc_color'.
"
84 " --compose_megapix <float>
"
85 " Resolution for compositing step. Use -1 for original resolution.
"
86 " The default is -1.
"
87 " --expos_comp (no|gain|gain_blocks|channels|channels_blocks)
"
88 " Exposure compensation method. The default is 'gain_blocks'.
"
89 " --expos_comp_nr_feeds <int>
"
90 " Number of exposure compensation feed. The default is 1.
"
91 " --expos_comp_nr_filtering <int>
"
92 " Number of filtering iterations of the exposure compensation gains.
"
93 " Only used when using a block exposure compensation method.
"
94 " The default is 2.
"
95 " --expos_comp_block_size <int>
"
96 " BLock size in pixels used by the exposure compensator.
"
97 " Only used when using a block exposure compensation method.
"
98 " The default is 32.
"
99 " --blend (no|feather|multiband)
"
100 " Blending method. The default is 'multiband'.
"
101 " --blend_strength <float>
"
102 " Blending strength from [0,100] range. The default is 5.
"
103 " --output <result_img>
"
104 " The default is 'result.jpg'.
"
105 " --timelapse (as_is|crop)
"
106 " Output warped images separately as frames of a time lapse movie, with 'fixed_' prepended to input file names.
"
107 " --rangewidth <int>
"
108 " uses range_width to limit number of images to match with.
";
109 }
110
111
112 // Default command line args
113 vector<String> img_names;
114 bool preview = false;
115 bool try_cuda = false;
116 double work_megapix = 0.6;
117 double seam_megapix = 0.1;
118 double compose_megapix = -1;
119 float conf_thresh = 1.f;
120 #ifdef HAVE_OPENCV_XFEATURES2D
121 string features_type = "surf";
122 float match_conf = 0.65f;
123 #else
124 string features_type = "orb";
125 float match_conf = 0.3f;
126 #endif
127 string matcher_type = "homography";
128 string estimator_type = "homography";
129 string ba_cost_func = "ray";
130 string ba_refine_mask = "xxxxx";
131 bool do_wave_correct = true;
132 WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ;
133 bool save_graph = false;
134 std::string save_graph_to;
135 string warp_type = "spherical";
136 int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
137 int expos_comp_nr_feeds = 1;
138 int expos_comp_nr_filtering = 2;
139 int expos_comp_block_size = 32;
140 string seam_find_type = "gc_color";
141 int blend_type = Blender::MULTI_BAND;
142 int timelapse_type = Timelapser::AS_IS;
143 float blend_strength = 5;
144 string result_name = "result.jpg";
145 bool timelapse = false;
146 int range_width = -1;
147
148
149 static int parseCmdArgs(int argc, char** argv)
150 {
151 if (argc == 1)
152 {
153 printUsage(argv);
154 return -1;
155 }
156 for (int i = 1; i < argc; ++i)
157 {
158 if (string(argv[i]) == "--help" || string(argv[i]) == "/?")
159 {
160 printUsage(argv);
161 return -1;
162 }
163 else if (string(argv[i]) == "--preview")
164 {
165 preview = true;
166 }
167 else if (string(argv[i]) == "--try_cuda")
168 {
169 if (string(argv[i + 1]) == "no")
170 try_cuda = false;
171 else if (string(argv[i + 1]) == "yes")
172 try_cuda = true;
173 else
174 {
175 cout << "Bad --try_cuda flag value
";
176 return -1;
177 }
178 i++;
179 }
180 else if (string(argv[i]) == "--work_megapix")
181 {
182 work_megapix = atof(argv[i + 1]);
183 i++;
184 }
185 else if (string(argv[i]) == "--seam_megapix")
186 {
187 seam_megapix = atof(argv[i + 1]);
188 i++;
189 }
190 else if (string(argv[i]) == "--compose_megapix")
191 {
192 compose_megapix = atof(argv[i + 1]);
193 i++;
194 }
195 else if (string(argv[i]) == "--result")
196 {
197 result_name = argv[i + 1];
198 i++;
199 }
200 else if (string(argv[i]) == "--features")
201 {
202 features_type = argv[i + 1];
203 if (string(features_type) == "orb")
204 match_conf = 0.3f;
205 i++;
206 }
207 else if (string(argv[i]) == "--matcher")
208 {
209 if (string(argv[i + 1]) == "homography" || string(argv[i + 1]) == "affine")
210 matcher_type = argv[i + 1];
211 else
212 {
213 cout << "Bad --matcher flag value
";
214 return -1;
215 }
216 i++;
217 }
218 else if (string(argv[i]) == "--estimator")
219 {
220 if (string(argv[i + 1]) == "homography" || string(argv[i + 1]) == "affine")
221 estimator_type = argv[i + 1];
222 else
223 {
224 cout << "Bad --estimator flag value
";
225 return -1;
226 }
227 i++;
228 }
229 else if (string(argv[i]) == "--match_conf")
230 {
231 match_conf = static_cast<float>(atof(argv[i + 1]));
232 i++;
233 }
234 else if (string(argv[i]) == "--conf_thresh")
235 {
236 conf_thresh = static_cast<float>(atof(argv[i + 1]));
237 i++;
238 }
239 else if (string(argv[i]) == "--ba")
240 {
241 ba_cost_func = argv[i + 1];
242 i++;
243 }
244 else if (string(argv[i]) == "--ba_refine_mask")
245 {
246 ba_refine_mask = argv[i + 1];
247 if (ba_refine_mask.size() != 5)
248 {
249 cout << "Incorrect refinement mask length.
";
250 return -1;
251 }
252 i++;
253 }
254 else if (string(argv[i]) == "--wave_correct")
255 {
256 if (string(argv[i + 1]) == "no")
257 do_wave_correct = false;
258 else if (string(argv[i + 1]) == "horiz")
259 {
260 do_wave_correct = true;
261 wave_correct = detail::WAVE_CORRECT_HORIZ;
262 }
263 else if (string(argv[i + 1]) == "vert")
264 {
265 do_wave_correct = true;
266 wave_correct = detail::WAVE_CORRECT_VERT;
267 }
268 else
269 {
270 cout << "Bad --wave_correct flag value
";
271 return -1;
272 }
273 i++;
274 }
275 else if (string(argv[i]) == "--save_graph")
276 {
277 save_graph = true;
278 save_graph_to = argv[i + 1];
279 i++;
280 }
281 else if (string(argv[i]) == "--warp")
282 {
283 warp_type = string(argv[i + 1]);
284 i++;
285 }
286 else if (string(argv[i]) == "--expos_comp")
287 {
288 if (string(argv[i + 1]) == "no")
289 expos_comp_type = ExposureCompensator::NO;
290 else if (string(argv[i + 1]) == "gain")
291 expos_comp_type = ExposureCompensator::GAIN;
292 else if (string(argv[i + 1]) == "gain_blocks")
293 expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
294 else if (string(argv[i + 1]) == "channels")
295 expos_comp_type = ExposureCompensator::CHANNELS;
296 else if (string(argv[i + 1]) == "channels_blocks")
297 expos_comp_type = ExposureCompensator::CHANNELS_BLOCKS;
298 else
299 {
300 cout << "Bad exposure compensation method
";
301 return -1;
302 }
303 i++;
304 }
305 else if (string(argv[i]) == "--expos_comp_nr_feeds")
306 {
307 expos_comp_nr_feeds = atoi(argv[i + 1]);
308 i++;
309 }
310 else if (string(argv[i]) == "--expos_comp_nr_filtering")
311 {
312 expos_comp_nr_filtering = atoi(argv[i + 1]);
313 i++;
314 }
315 else if (string(argv[i]) == "--expos_comp_block_size")
316 {
317 expos_comp_block_size = atoi(argv[i + 1]);
318 i++;
319 }
320 else if (string(argv[i]) == "--seam")
321 {
322 if (string(argv[i + 1]) == "no" ||
323 string(argv[i + 1]) == "voronoi" ||
324 string(argv[i + 1]) == "gc_color" ||
325 string(argv[i + 1]) == "gc_colorgrad" ||
326 string(argv[i + 1]) == "dp_color" ||
327 string(argv[i + 1]) == "dp_colorgrad")
328 seam_find_type = argv[i + 1];
329 else
330 {
331 cout << "Bad seam finding method
";
332 return -1;
333 }
334 i++;
335 }
336 else if (string(argv[i]) == "--blend")
337 {
338 if (string(argv[i + 1]) == "no")
339 blend_type = Blender::NO;
340 else if (string(argv[i + 1]) == "feather")
341 blend_type = Blender::FEATHER;
342 else if (string(argv[i + 1]) == "multiband")
343 blend_type = Blender::MULTI_BAND;
344 else
345 {
346 cout << "Bad blending method
";
347 return -1;
348 }
349 i++;
350 }
351 else if (string(argv[i]) == "--timelapse")
352 {
353 timelapse = true;
354
355 if (string(argv[i + 1]) == "as_is")
356 timelapse_type = Timelapser::AS_IS;
357 else if (string(argv[i + 1]) == "crop")
358 timelapse_type = Timelapser::CROP;
359 else
360 {
361 cout << "Bad timelapse method
";
362 return -1;
363 }
364 i++;
365 }
366 else if (string(argv[i]) == "--rangewidth")
367 {
368 range_width = atoi(argv[i + 1]);
369 i++;
370 }
371 else if (string(argv[i]) == "--blend_strength")
372 {
373 blend_strength = static_cast<float>(atof(argv[i + 1]));
374 i++;
375 }
376 else if (string(argv[i]) == "--output")
377 {
378 result_name = argv[i + 1];
379 i++;
380 }
381 else
382 img_names.push_back(argv[i]);
383 }
384 if (preview)
385 {
386 compose_megapix = 0.6;
387 }
388 return 0;
389 }
390
391
392 int main(int argc, char* argv[])
393 {
394 #if ENABLE_LOG
395 int64 app_start_time = getTickCount();
396 #endif
397
398 #if 0
399 cv::setBreakOnError(true);
400 #endif
401
402 int retval = parseCmdArgs(argc, argv);
403 if (retval)
404 return retval;
405
406 // Check if have enough images
407 int num_images = static_cast<int>(img_names.size());
408 if (num_images < 2)
409 {
410 LOGLN("Need more images");
411 return -1;
412 }
413
414 double work_scale = 1, seam_scale = 1, compose_scale = 1;
415 bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
416
417 LOGLN("Finding features...");
418 #if ENABLE_LOG
419 int64 t = getTickCount();
420 #endif
421
422 Ptr<Feature2D> finder;
423 if (features_type == "orb")
424 {
425 finder = ORB::create();
426 }
427 else if (features_type == "akaze")
428 {
429 finder = AKAZE::create();
430 }
431 #ifdef HAVE_OPENCV_XFEATURES2D
432 else if (features_type == "surf")
433 {
434 finder = xfeatures2d::SURF::create();
435 }
436 #endif
437 else if (features_type == "sift")
438 {
439 finder = SIFT::create();
440 }
441 else
442 {
443 cout << "Unknown 2D features type: '" << features_type << "'.
";
444 return -1;
445 }
446
447 Mat full_img, img;
448 vector<ImageFeatures> features(num_images);
449 vector<Mat> images(num_images);
450 vector<Size> full_img_sizes(num_images);
451 double seam_work_aspect = 1;
452
453 for (int i = 0; i < num_images; ++i)
454 {
455 full_img = imread(samples::findFile(img_names[i]));
456 full_img_sizes[i] = full_img.size();
457
458 if (full_img.empty())
459 {
460 LOGLN("Can't open image " << img_names[i]);
461 return -1;
462 }
463 if (work_megapix < 0)
464 {
465 img = full_img;
466 work_scale = 1;
467 is_work_scale_set = true;
468 }
469 else
470 {
471 if (!is_work_scale_set)
472 {
473 work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
474 is_work_scale_set = true;
475 }
476 resize(full_img, img, Size(), work_scale, work_scale, INTER_LINEAR_EXACT);
477 }
478 if (!is_seam_scale_set)
479 {
480 seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
481 seam_work_aspect = seam_scale / work_scale;
482 is_seam_scale_set = true;
483 }
484
485 computeImageFeatures(finder, img, features[i]);
486 features[i].img_idx = i;
487 LOGLN("Features in image #" << i + 1 << ": " << features[i].keypoints.size());
488
489 resize(full_img, img, Size(), seam_scale, seam_scale, INTER_LINEAR_EXACT);
490 images[i] = img.clone();
491 }
492
493 full_img.release();
494 img.release();
495
496 LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
497
498 LOG("Pairwise matching");
499 #if ENABLE_LOG
500 t = getTickCount();
501 #endif
502 vector<MatchesInfo> pairwise_matches;
503 Ptr<FeaturesMatcher> matcher;
504 if (matcher_type == "affine")
505 matcher = makePtr<AffineBestOf2NearestMatcher>(false, try_cuda, match_conf);
506 else if (range_width == -1)
507 matcher = makePtr<BestOf2NearestMatcher>(try_cuda, match_conf);
508 else
509 matcher = makePtr<BestOf2NearestRangeMatcher>(range_width, try_cuda, match_conf);
510
511 (*matcher)(features, pairwise_matches);
512 matcher->collectGarbage();
513
514 LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
515
516 // Check if we should save matches graph
517 if (save_graph)
518 {
519 LOGLN("Saving matches graph...");
520 ofstream f(save_graph_to.c_str());
521 f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
522 }
523
524 // Leave only images we are sure are from the same panorama
525 vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
526 vector<Mat> img_subset;
527 vector<String> img_names_subset;
528 vector<Size> full_img_sizes_subset;
529 for (size_t i = 0; i < indices.size(); ++i)
530 {
531 img_names_subset.push_back(img_names[indices[i]]);
532 img_subset.push_back(images[indices[i]]);
533 full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
534 }
535
536 images = img_subset;
537 img_names = img_names_subset;
538 full_img_sizes = full_img_sizes_subset;
539
540 // Check if we still have enough images
541 num_images = static_cast<int>(img_names.size());
542 if (num_images < 2)
543 {
544 LOGLN("Need more images");
545 return -1;
546 }
547
548 Ptr<Estimator> estimator;
549 if (estimator_type == "affine")
550 estimator = makePtr<AffineBasedEstimator>();
551 else
552 estimator = makePtr<HomographyBasedEstimator>();
553
554 vector<CameraParams> cameras;
555 if (!(*estimator)(features, pairwise_matches, cameras))
556 {
557 cout << "Homography estimation failed.
";
558 return -1;
559 }
560
561 for (size_t i = 0; i < cameras.size(); ++i)
562 {
563 Mat R;
564 cameras[i].R.convertTo(R, CV_32F);
565 cameras[i].R = R;
566 LOGLN("Initial camera intrinsics #" << indices[i] + 1 << ":
K:
" << cameras[i].K() << "
R:
" << cameras[i].R);
567 }
568
569 Ptr<detail::BundleAdjusterBase> adjuster;
570 if (ba_cost_func == "reproj") adjuster = makePtr<detail::BundleAdjusterReproj>();
571 else if (ba_cost_func == "ray") adjuster = makePtr<detail::BundleAdjusterRay>();
572 else if (ba_cost_func == "affine") adjuster = makePtr<detail::BundleAdjusterAffinePartial>();
573 else if (ba_cost_func == "no") adjuster = makePtr<NoBundleAdjuster>();
574 else
575 {
576 cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.
";
577 return -1;
578 }
579 adjuster->setConfThresh(conf_thresh);
580 Mat_<uchar> refine_mask = Mat::zeros(3, 3, CV_8U);
581 if (ba_refine_mask[0] == 'x') refine_mask(0, 0) = 1;
582 if (ba_refine_mask[1] == 'x') refine_mask(0, 1) = 1;
583 if (ba_refine_mask[2] == 'x') refine_mask(0, 2) = 1;
584 if (ba_refine_mask[3] == 'x') refine_mask(1, 1) = 1;
585 if (ba_refine_mask[4] == 'x') refine_mask(1, 2) = 1;
586 adjuster->setRefinementMask(refine_mask);
587 if (!(*adjuster)(features, pairwise_matches, cameras))
588 {
589 cout << "Camera parameters adjusting failed.
";
590 return -1;
591 }
592
593 // Find median focal length
594
595 vector<double> focals;
596 for (size_t i = 0; i < cameras.size(); ++i)
597 {
598 LOGLN("Camera #" << indices[i] + 1 << ":
K:
" << cameras[i].K() << "
R:
" << cameras[i].R);
599 focals.push_back(cameras[i].focal);
600 }
601
602 sort(focals.begin(), focals.end());
603 float warped_image_scale;
604 if (focals.size() % 2 == 1)
605 warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
606 else
607 warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
608
609 if (do_wave_correct)
610 {
611 vector<Mat> rmats;
612 for (size_t i = 0; i < cameras.size(); ++i)
613 rmats.push_back(cameras[i].R.clone());
614 waveCorrect(rmats, wave_correct);
615 for (size_t i = 0; i < cameras.size(); ++i)
616 cameras[i].R = rmats[i];
617 }
618
619 LOGLN("Warping images (auxiliary)... ");
620 #if ENABLE_LOG
621 t = getTickCount();
622 #endif
623
624 vector<Point> corners(num_images);
625 vector<UMat> masks_warped(num_images);
626 vector<UMat> images_warped(num_images);
627 vector<Size> sizes(num_images);
628 vector<UMat> masks(num_images);
629
630 // Prepare images masks
631 for (int i = 0; i < num_images; ++i)
632 {
633 masks[i].create(images[i].size(), CV_8U);
634 masks[i].setTo(Scalar::all(255));
635 }
636
637 // Warp images and their masks
638
639 Ptr<WarperCreator> warper_creator;
640 #ifdef HAVE_OPENCV_CUDAWARPING
641 if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
642 {
643 if (warp_type == "plane")
644 warper_creator = makePtr<cv::PlaneWarperGpu>();
645 else if (warp_type == "cylindrical")
646 warper_creator = makePtr<cv::CylindricalWarperGpu>();
647 else if (warp_type == "spherical")
648 warper_creator = makePtr<cv::SphericalWarperGpu>();
649 }
650 else
651 #endif
652 {
653 if (warp_type == "plane")
654 warper_creator = makePtr<cv::PlaneWarper>();
655 else if (warp_type == "affine")
656 warper_creator = makePtr<cv::AffineWarper>();
657 else if (warp_type == "cylindrical")
658 warper_creator = makePtr<cv::CylindricalWarper>();
659 else if (warp_type == "spherical")
660 warper_creator = makePtr<cv::SphericalWarper>();
661 else if (warp_type == "fisheye")
662 warper_creator = makePtr<cv::FisheyeWarper>();
663 else if (warp_type == "stereographic")
664 warper_creator = makePtr<cv::StereographicWarper>();
665 else if (warp_type == "compressedPlaneA2B1")
666 warper_creator = makePtr<cv::CompressedRectilinearWarper>(2.0f, 1.0f);
667 else if (warp_type == "compressedPlaneA1.5B1")
668 warper_creator = makePtr<cv::CompressedRectilinearWarper>(1.5f, 1.0f);
669 else if (warp_type == "compressedPlanePortraitA2B1")
670 warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(2.0f, 1.0f);
671 else if (warp_type == "compressedPlanePortraitA1.5B1")
672 warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(1.5f, 1.0f);
673 else if (warp_type == "paniniA2B1")
674 warper_creator = makePtr<cv::PaniniWarper>(2.0f, 1.0f);
675 else if (warp_type == "paniniA1.5B1")
676 warper_creator = makePtr<cv::PaniniWarper>(1.5f, 1.0f);
677 else if (warp_type == "paniniPortraitA2B1")
678 warper_creator = makePtr<cv::PaniniPortraitWarper>(2.0f, 1.0f);
679 else if (warp_type == "paniniPortraitA1.5B1")
680 warper_creator = makePtr<cv::PaniniPortraitWarper>(1.5f, 1.0f);
681 else if (warp_type == "mercator")
682 warper_creator = makePtr<cv::MercatorWarper>();
683 else if (warp_type == "transverseMercator")
684 warper_creator = makePtr<cv::TransverseMercatorWarper>();
685 }
686
687 if (!warper_creator)
688 {
689 cout << "Can't create the following warper '" << warp_type << "'
";
690 return 1;
691 }
692
693 Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect));
694
695 for (int i = 0; i < num_images; ++i)
696 {
697 Mat_<float> K;
698 cameras[i].K().convertTo(K, CV_32F);
699 float swa = (float)seam_work_aspect;
700 K(0, 0) *= swa; K(0, 2) *= swa;
701 K(1, 1) *= swa; K(1, 2) *= swa;
702
703 corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
704 sizes[i] = images_warped[i].size();
705
706 warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
707 }
708
709 vector<UMat> images_warped_f(num_images);
710 for (int i = 0; i < num_images; ++i)
711 images_warped[i].convertTo(images_warped_f[i], CV_32F);
712
713 LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
714
715 LOGLN("Compensating exposure...");
716 #if ENABLE_LOG
717 t = getTickCount();
718 #endif
719
720 Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);
721 if (dynamic_cast<GainCompensator*>(compensator.get()))
722 {
723 GainCompensator* gcompensator = dynamic_cast<GainCompensator*>(compensator.get());
724 gcompensator->setNrFeeds(expos_comp_nr_feeds);
725 }
726
727 if (dynamic_cast<ChannelsCompensator*>(compensator.get()))
728 {
729 ChannelsCompensator* ccompensator = dynamic_cast<ChannelsCompensator*>(compensator.get());
730 ccompensator->setNrFeeds(expos_comp_nr_feeds);
731 }
732
733 if (dynamic_cast<BlocksCompensator*>(compensator.get()))
734 {
735 BlocksCompensator* bcompensator = dynamic_cast<BlocksCompensator*>(compensator.get());
736 bcompensator->setNrFeeds(expos_comp_nr_feeds);
737 bcompensator->setNrGainsFilteringIterations(expos_comp_nr_filtering);
738 bcompensator->setBlockSize(expos_comp_block_size, expos_comp_block_size);
739 }
740
741 compensator->feed(corners, images_warped, masks_warped);
742
743 LOGLN("Compensating exposure, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
744
745 LOGLN("Finding seams...");
746 #if ENABLE_LOG
747 t = getTickCount();
748 #endif
749
750 Ptr<SeamFinder> seam_finder;
751 if (seam_find_type == "no")
752 seam_finder = makePtr<detail::NoSeamFinder>();
753 else if (seam_find_type == "voronoi")
754 seam_finder = makePtr<detail::VoronoiSeamFinder>();
755 else if (seam_find_type == "gc_color")
756 {
757 #ifdef HAVE_OPENCV_CUDALEGACY
758 if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
759 seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR);
760 else
761 #endif
762 seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR);
763 }
764 else if (seam_find_type == "gc_colorgrad")
765 {
766 #ifdef HAVE_OPENCV_CUDALEGACY
767 if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
768 seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR_GRAD);
769 else
770 #endif
771 seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR_GRAD);
772 }
773 else if (seam_find_type == "dp_color")
774 seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR);
775 else if (seam_find_type == "dp_colorgrad")
776 seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR_GRAD);
777 if (!seam_finder)
778 {
779 cout << "Can't create the following seam finder '" << seam_find_type << "'
";
780 return 1;
781 }
782
783 seam_finder->find(images_warped_f, corners, masks_warped);
784
785 LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
786
787 // Release unused memory
788 images.clear();
789 images_warped.clear();
790 images_warped_f.clear();
791 masks.clear();
792
793 LOGLN("Compositing...");
794 #if ENABLE_LOG
795 t = getTickCount();
796 #endif
797
798 Mat img_warped, img_warped_s;
799 Mat dilated_mask, seam_mask, mask, mask_warped;
800 Ptr<Blender> blender;
801 Ptr<Timelapser> timelapser;
802 //double compose_seam_aspect = 1;
803 double compose_work_aspect = 1;
804
805 for (int img_idx = 0; img_idx < num_images; ++img_idx)
806 {
807 LOGLN("Compositing image #" << indices[img_idx] + 1);
808
809 // Read image and resize it if necessary
810 full_img = imread(samples::findFile(img_names[img_idx]));
811 if (!is_compose_scale_set)
812 {
813 if (compose_megapix > 0)
814 compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
815 is_compose_scale_set = true;
816
817 // Compute relative scales
818 //compose_seam_aspect = compose_scale / seam_scale;
819 compose_work_aspect = compose_scale / work_scale;
820
821 // Update warped image scale
822 warped_image_scale *= static_cast<float>(compose_work_aspect);
823 warper = warper_creator->create(warped_image_scale);
824
825 // Update corners and sizes
826 for (int i = 0; i < num_images; ++i)
827 {
828 // Update intrinsics
829 cameras[i].focal *= compose_work_aspect;
830 cameras[i].ppx *= compose_work_aspect;
831 cameras[i].ppy *= compose_work_aspect;
832
833 // Update corner and size
834 Size sz = full_img_sizes[i];
835 if (std::abs(compose_scale - 1) > 1e-1)
836 {
837 sz.width = cvRound(full_img_sizes[i].width * compose_scale);
838 sz.height = cvRound(full_img_sizes[i].height * compose_scale);
839 }
840
841 Mat K;
842 cameras[i].K().convertTo(K, CV_32F);
843 Rect roi = warper->warpRoi(sz, K, cameras[i].R);
844 corners[i] = roi.tl();
845 sizes[i] = roi.size();
846 }
847 }
848 if (abs(compose_scale - 1) > 1e-1)
849 resize(full_img, img, Size(), compose_scale, compose_scale, INTER_LINEAR_EXACT);
850 else
851 img = full_img;
852 full_img.release();
853 Size img_size = img.size();
854
855 Mat K;
856 cameras[img_idx].K().convertTo(K, CV_32F);
857
858 // Warp the current image
859 warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
860
861 // Warp the current image mask
862 mask.create(img_size, CV_8U);
863 mask.setTo(Scalar::all(255));
864 warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
865
866 // Compensate exposure
867 compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
868
869 img_warped.convertTo(img_warped_s, CV_16S);
870 img_warped.release();
871 img.release();
872 mask.release();
873
874 dilate(masks_warped[img_idx], dilated_mask, Mat());
875 resize(dilated_mask, seam_mask, mask_warped.size(), 0, 0, INTER_LINEAR_EXACT);
876 mask_warped = seam_mask & mask_warped;
877
878 if (!blender && !timelapse)
879 {
880 blender = Blender::createDefault(blend_type, try_cuda);
881 Size dst_sz = resultRoi(corners, sizes).size();
882 float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
883 if (blend_width < 1.f)
884 blender = Blender::createDefault(Blender::NO, try_cuda);
885 else if (blend_type == Blender::MULTI_BAND)
886 {
887 MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(blender.get());
888 mb->setNumBands(static_cast<int>(ceil(log(blend_width) / log(2.)) - 1.));
889 LOGLN("Multi-band blender, number of bands: " << mb->numBands());
890 }
891 else if (blend_type == Blender::FEATHER)
892 {
893 FeatherBlender* fb = dynamic_cast<FeatherBlender*>(blender.get());
894 fb->setSharpness(1.f / blend_width);
895 LOGLN("Feather blender, sharpness: " << fb->sharpness());
896 }
897 blender->prepare(corners, sizes);
898 }
899 else if (!timelapser && timelapse)
900 {
901 timelapser = Timelapser::createDefault(timelapse_type);
902 timelapser->initialize(corners, sizes);
903 }
904
905 // Blend the current image
906 if (timelapse)
907 {
908 timelapser->process(img_warped_s, Mat::ones(img_warped_s.size(), CV_8UC1), corners[img_idx]);
909 String fixedFileName;
910 size_t pos_s = String(img_names[img_idx]).find_last_of("/\");
911 if (pos_s == String::npos)
912 {
913 fixedFileName = "fixed_" + img_names[img_idx];
914 }
915 else
916 {
917 fixedFileName = "fixed_" + String(img_names[img_idx]).substr(pos_s + 1, String(img_names[img_idx]).length() - pos_s);
918 }
919 imwrite(fixedFileName, timelapser->getDst());
920 }
921 else
922 {
923 blender->feed(img_warped_s, mask_warped, corners[img_idx]);
924 }
925 }
926
927 if (!timelapse)
928 {
929 Mat result, result_mask;
930 blender->blend(result, result_mask);
931
932 LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
933
934 imwrite(result_name, result);
935 }
936
937 LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
938 return 0;
939 }
stitching_detail 程序运行流程
- 命令行调用程序,输入源图像以及程序的参数
- 特征点检测,判断是使用 surf 还是 orb,默认是 surf
- 对图像的特征点进行匹配,使用最近邻和次近邻方法,将两个最优的匹配的置信度 保存下来
- 对图像进行排序以及将置信度高的图像保存到同一个集合中,删除置信度比较低的图像间的匹配,得到能正确匹配的图像序列。这样将置信度高于门限的所有匹配合并到一个集合中
- 对所有图像进行相机参数粗略估计,然后求出旋转矩阵
- 使用光束平均法进一步精准的估计出旋转矩阵
- 波形校正,水平或者垂直
- 拼接
- 融合,多频段融合,光照补偿
stitching_detail 程序接口介绍
- img1 img2 img3 输入图像
- --preview 以预览模式运行程序,比正常模式要快,但输出图像分辨率低,拼接的分辨 率 compose_megapix 设置为 0.6
- --try_gpu (yes|no) 是否使用 CUDA加速,默认为 no,使用CPU模式
- /* 运动估计参数 */
- --work_megapix <--work_megapix <float>> 图像匹配时的分辨率大小,默认为 0.6
- --features (surf | orb | sift | akaze) 选择 surf 或者 orb 算法进行特征点匹配,默认为 surf
- --matcher (homography | affine) 用于成对图像匹配的匹配器
- --estimator (homography | affine) 用于转换估计的估计器类型
- --match_conf <float> 特征点匹配步骤的匹配置信度,最近邻匹配距离与次近邻匹配距离的比值,surf 默认为 0.65,orb 默认为 0.3
- --conf_thresh <float> 两幅图来自同一全景图的置信度,默认为 1.0
- --ba (no | reproj | ray | affine) 光束平均法的误差函数选择,默认是 ray 方法
- --ba_refine_mask (mask) 光束平均法设置优化掩码
- --wave_correct (no|horiz|vert) 波形校验水平,垂直或者没有 默认是 horiz(水平)
- --save_graph <file_name> 将匹配的图形以点的形式保存到文件中, Nm 代表匹配的数量,NI代表正确匹配的数量,C 表示置信度
- /*图像融合参数:*/
- --warp (plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPla neA1.5B1|compressedPlanePortraitA2B1|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPor traitA1.5B1|mercator|transverseMercator) 选择融合的平面,默认是球形
- --seam_megapix <float> 拼接缝像素的大小 默认是 0.1
- --seam (no|voronoi|gc_color|gc_colorgrad) 拼接缝隙估计方法 默认是 gc_color
- --compose_megapix <float> 拼接分辨率,默认为-1
- --expos_comp (no|gain|gain_blocks) 光照补偿方法,默认是 gain_blocks
- --blend (no|feather|multiband) 融合方法,默认是多频段融合
- --blend_strength <float> 融合强度,0-100.默认是 5.
- --output <result_img> 输出图像的文件名,默认是 result,jpg 命令使用实例,以及程序运行时的提示:
上面使用默认参数,详细输出信息如下:
1 E:PracticeOpenCVAlgorithm_SummaryImage_Stitchingx64Debug>05_Image_Stitch_Stitching_Detailed.exe ./imgs/boat1.jpg ./imgs/boat2.jpg ./imgs/boat3.jpg ./imgs/boat4.jpg ./imgs/boat5.jpg ./imgs/boat6.jpg
2 Finding features...
3 [ INFO:0] global C:uildmaster_winpack-build-win64-vc15opencvmodulescoresrcocl.cpp (891) cv::ocl::haveOpenCL Initialize OpenCL runtime...
4 Features in image #1: 500
5 [ INFO:0] global C:uildmaster_winpack-build-win64-vc15opencvmodulescoresrcocl.cpp (433) cv::ocl::OpenCLBinaryCacheConfigurator::OpenCLBinaryCacheConfigurator Successfully initialized OpenCL cache directory: C:UsersA4080599AppDataLocalTempopencv4.4opencl_cache
6 [ INFO:0] global C:uildmaster_winpack-build-win64-vc15opencvmodulescoresrcocl.cpp (457) cv::ocl::OpenCLBinaryCacheConfigurator::prepareCacheDirectoryForContext Preparing OpenCL cache configuration for context: NVIDIA_Corporation--GeForce_GTX_1070--411_31
7 Features in image #2: 500
8 Features in image #3: 500
9 Features in image #4: 500
10 Features in image #5: 500
11 Features in image #6: 500
12 Finding features, time: 5.46377 sec
13 Pairwise matchingPairwise matching, time: 3.24159 sec
14 Initial camera intrinsics #1:
15 K:
16 [534.6674906996568, 0, 474.5;
17 0, 534.6674906996568, 316;
18 0, 0, 1]
19 R:
20 [0.91843718, -0.09762425, -1.1678253;
21 0.0034433089, 1.0835428, -0.025021957;
22 0.28152198, 0.16100603, 0.91920781]
23 Initial camera intrinsics #2:
24 K:
25 [534.6674906996568, 0, 474.5;
26 0, 534.6674906996568, 316;
27 0, 0, 1]
28 R:
29 [1.001171, -0.085758291, -0.64530683;
30 0.010103324, 1.0520245, -0.030576767;
31 0.15743911, 0.12035993, 1]
32 Initial camera intrinsics #3:
33 K:
34 [534.6674906996568, 0, 474.5;
35 0, 534.6674906996568, 316;
36 0, 0, 1]
37 R:
38 [1, 0, 0;
39 0, 1, 0;
40 0, 0, 1]
41 Initial camera intrinsics #4:
42 K:
43 [534.6674906996568, 0, 474.5;
44 0, 534.6674906996568, 316;
45 0, 0, 1]
46 R:
47 [0.8474561, 0.028589081, 0.75133896;
48 -0.0014587968, 0.92028928, 0.033205934;
49 -0.17483309, 0.018777205, 0.84592116]
50 Initial camera intrinsics #5:
51 K:
52 [534.6674906996568, 0, 474.5;
53 0, 534.6674906996568, 316;
54 0, 0, 1]
55 R:
56 [0.60283858, 0.069275051, 1.2121853;
57 -0.014153662, 0.85474133, 0.014057174;
58 -0.29529575, 0.053770453, 0.61932623]
59 Initial camera intrinsics #6:
60 K:
61 [534.6674906996568, 0, 474.5;
62 0, 534.6674906996568, 316;
63 0, 0, 1]
64 R:
65 [0.41477469, 0.075901195, 1.4396564;
66 -0.015423983, 0.82344943, 0.0061162044;
67 -0.35168326, 0.055747174, 0.42653102]
68 Camera #1:
69 K:
70 [1068.953598931666, 0, 474.5;
71 0, 1068.953598931666, 316;
72 0, 0, 1]
73 R:
74 [0.84266716, -0.010490002, -0.53833258;
75 0.004485324, 0.99991232, -0.01246338;
76 0.53841609, 0.0080878884, 0.84264034]
77 Camera #2:
78 K:
79 [1064.878323247434, 0, 474.5;
80 0, 1064.878323247434, 316;
81 0, 0, 1]
82 R:
83 [0.95117813, -0.015436338, -0.3082563;
84 0.01137107, 0.99982315, -0.014980057;
85 0.308433, 0.010743499, 0.95118535]
86 Camera #3:
87 K:
88 [1065.382193682081, 0, 474.5;
89 0, 1065.382193682081, 316;
90 0, 0, 1]
91 R:
92 [1, -1.6298145e-09, 0;
93 -1.5716068e-09, 1, 0;
94 0, 0, 1]
95 Camera #4:
96 K:
97 [1067.611537959627, 0, 474.5;
98 0, 1067.611537959627, 316;
99 0, 0, 1]
100 R:
101 [0.91316396, -7.9067249e-06, 0.40759254;
102 -0.0075879274, 0.99982637, 0.017019274;
103 -0.4075219, -0.018634165, 0.91300529]
104 Camera #5:
105 K:
106 [1080.708135180496, 0, 474.5;
107 0, 1080.708135180496, 316;
108 0, 0, 1]
109 R:
110 [0.70923853, 0.0025724203, 0.70496398;
111 -0.0098195076, 0.99993235, 0.0062302947;
112 -0.70490021, -0.01134116, 0.70921582]
113 Camera #6:
114 K:
115 [1080.90412660159, 0, 474.5;
116 0, 1080.90412660159, 316;
117 0, 0, 1]
118 R:
119 [0.49985889, 3.5938341e-05, 0.86610687;
120 -0.00682831, 0.99996907, 0.0038993564;
121 -0.86607999, -0.0078631733, 0.49984369]
122 Warping images (auxiliary)...
123 Warping images, time: 0.0791121 sec
124 Compensating exposure...
125 Compensating exposure, time: 0.72288 sec
126 Finding seams...
127 Finding seams, time: 3.09237 sec
128 Compositing...
129 Compositing image #1
130 Multi-band blender, number of bands: 8
131 Compositing image #2
132 Compositing image #3
133 Compositing image #4
134 Compositing image #5
135 Compositing image #6
136 Compositing, time: 13.7766 sec
137 Finished, total time: 29.4535 sec
输入图像boat1.jpg、boat2.jpg、boat3.jpg、boat4.jpg、boat5.jpg、boat6.jpg如下(可以在OpenCV安装目录下找到D:OpenCV4.4opencv_extra-master estdatastitching)
结果图:
参数warp_type 设置为"plane",效果图如下:
参数warp_type 设置为"fisheye",效果图如下(旋转90°后):
其他的参数可以根据自己需要修改,如果要自己完成还需要详细了解拼接步骤再优化。