• OpenCV 图像拼接-Stitcher类-Stitching detailed使用与参数介绍


    关于OpenCV图像拼接的方法,如果不熟悉的话,可以先看看我整理的如下四篇博客:

    • OpenCV常用图像拼接方法(一):直接拼接(硬拼)

    • OpenCV常用图像拼接方法(二):基于模板匹配拼接

    • OpenCV常用图像拼接方法(三):基于特征匹配拼接

    • OpenCV常用图像拼接方法(四):基于Stitcher类拼接

    本篇博客是Stitcher类的扩展介绍,通过例程stitching_detailed.cpp的使用和参数介绍,帮助大家了解Stitcher类拼接的具体步骤和方法,先看看其内部的流程结构图(如下):

    这里写图片描述

    stitching_detailed.cpp目录如下,可以在自己安装的OpenCV目录下找到,笔者这里使用的OpenCV4.4版本 

    stitching_detailed.cpp具体源码如下: 

      1 // 05_Image_Stitch_Stitching_Detailed.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
      2 //
      3 #include "pch.h"
      4 #include <iostream>
      5 #include <fstream>
      6 #include <string>
      7 #include "opencv2/opencv_modules.hpp"
      8 #include <opencv2/core/utility.hpp>
      9 #include "opencv2/imgcodecs.hpp"
     10 #include "opencv2/highgui.hpp"
     11 #include "opencv2/stitching/detail/autocalib.hpp"
     12 #include "opencv2/stitching/detail/blenders.hpp"
     13 #include "opencv2/stitching/detail/timelapsers.hpp"
     14 #include "opencv2/stitching/detail/camera.hpp"
     15 #include "opencv2/stitching/detail/exposure_compensate.hpp"
     16 #include "opencv2/stitching/detail/matchers.hpp"
     17 #include "opencv2/stitching/detail/motion_estimators.hpp"
     18 #include "opencv2/stitching/detail/seam_finders.hpp"
     19 #include "opencv2/stitching/detail/warpers.hpp"
     20 #include "opencv2/stitching/warpers.hpp"
     21  
     22 #ifdef HAVE_OPENCV_XFEATURES2D
     23 #include "opencv2/xfeatures2d.hpp"
     24 #include "opencv2/xfeatures2d/nonfree.hpp"
     25 #endif
     26  
     27 #define ENABLE_LOG 1
     28 #define LOG(msg) std::cout << msg
     29 #define LOGLN(msg) std::cout << msg << std::endl
     30  
     31 using namespace std;
     32 using namespace cv;
     33 using namespace cv::detail;
     34  
     35 static void printUsage(char** argv)
     36 {
     37     cout <<
     38         "Rotation model images stitcher.
    
    "
     39         << argv[0] << " img1 img2 [...imgN] [flags]
    
    "
     40         "Flags:
    "
     41         "  --preview
    "
     42         "      Run stitching in the preview mode. Works faster than usual mode,
    "
     43         "      but output image will have lower resolution.
    "
     44         "  --try_cuda (yes|no)
    "
     45         "      Try to use CUDA. The default value is 'no'. All default values
    "
     46         "      are for CPU mode.
    "
     47         "
    Motion Estimation Flags:
    "
     48         "  --work_megapix <float>
    "
     49         "      Resolution for image registration step. The default is 0.6 Mpx.
    "
     50         "  --features (surf|orb|sift|akaze)
    "
     51         "      Type of features used for images matching.
    "
     52         "      The default is surf if available, orb otherwise.
    "
     53         "  --matcher (homography|affine)
    "
     54         "      Matcher used for pairwise image matching.
    "
     55         "  --estimator (homography|affine)
    "
     56         "      Type of estimator used for transformation estimation.
    "
     57         "  --match_conf <float>
    "
     58         "      Confidence for feature matching step. The default is 0.65 for surf and 0.3 for orb.
    "
     59         "  --conf_thresh <float>
    "
     60         "      Threshold for two images are from the same panorama confidence.
    "
     61         "      The default is 1.0.
    "
     62         "  --ba (no|reproj|ray|affine)
    "
     63         "      Bundle adjustment cost function. The default is ray.
    "
     64         "  --ba_refine_mask (mask)
    "
     65         "      Set refinement mask for bundle adjustment. It looks like 'x_xxx',
    "
     66         "      where 'x' means refine respective parameter and '_' means don't
    "
     67         "      refine one, and has the following format:
    "
     68         "      <fx><skew><ppx><aspect><ppy>. The default mask is 'xxxxx'. If bundle
    "
     69         "      adjustment doesn't support estimation of selected parameter then
    "
     70         "      the respective flag is ignored.
    "
     71         "  --wave_correct (no|horiz|vert)
    "
     72         "      Perform wave effect correction. The default is 'horiz'.
    "
     73         "  --save_graph <file_name>
    "
     74         "      Save matches graph represented in DOT language to <file_name> file.
    "
     75         "      Labels description: Nm is number of matches, Ni is number of inliers,
    "
     76         "      C is confidence.
    "
     77         "
    Compositing Flags:
    "
     78         "  --warp (affine|plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPlaneA1.5B1|compressedPlanePortraitA2B1|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPortraitA1.5B1|mercator|transverseMercator)
    "
     79         "      Warp surface type. The default is 'spherical'.
    "
     80         "  --seam_megapix <float>
    "
     81         "      Resolution for seam estimation step. The default is 0.1 Mpx.
    "
     82         "  --seam (no|voronoi|gc_color|gc_colorgrad)
    "
     83         "      Seam estimation method. The default is 'gc_color'.
    "
     84         "  --compose_megapix <float>
    "
     85         "      Resolution for compositing step. Use -1 for original resolution.
    "
     86         "      The default is -1.
    "
     87         "  --expos_comp (no|gain|gain_blocks|channels|channels_blocks)
    "
     88         "      Exposure compensation method. The default is 'gain_blocks'.
    "
     89         "  --expos_comp_nr_feeds <int>
    "
     90         "      Number of exposure compensation feed. The default is 1.
    "
     91         "  --expos_comp_nr_filtering <int>
    "
     92         "      Number of filtering iterations of the exposure compensation gains.
    "
     93         "      Only used when using a block exposure compensation method.
    "
     94         "      The default is 2.
    "
     95         "  --expos_comp_block_size <int>
    "
     96         "      BLock size in pixels used by the exposure compensator.
    "
     97         "      Only used when using a block exposure compensation method.
    "
     98         "      The default is 32.
    "
     99         "  --blend (no|feather|multiband)
    "
    100         "      Blending method. The default is 'multiband'.
    "
    101         "  --blend_strength <float>
    "
    102         "      Blending strength from [0,100] range. The default is 5.
    "
    103         "  --output <result_img>
    "
    104         "      The default is 'result.jpg'.
    "
    105         "  --timelapse (as_is|crop) 
    "
    106         "      Output warped images separately as frames of a time lapse movie, with 'fixed_' prepended to input file names.
    "
    107         "  --rangewidth <int>
    "
    108         "      uses range_width to limit number of images to match with.
    ";
    109 }
    110  
    111  
    112 // Default command line args
    113 vector<String> img_names;
    114 bool preview = false;
    115 bool try_cuda = false;
    116 double work_megapix = 0.6;
    117 double seam_megapix = 0.1;
    118 double compose_megapix = -1;
    119 float conf_thresh = 1.f;
    120 #ifdef HAVE_OPENCV_XFEATURES2D
    121 string features_type = "surf";
    122 float match_conf = 0.65f;
    123 #else
    124 string features_type = "orb";
    125 float match_conf = 0.3f;
    126 #endif
    127 string matcher_type = "homography";
    128 string estimator_type = "homography";
    129 string ba_cost_func = "ray";
    130 string ba_refine_mask = "xxxxx";
    131 bool do_wave_correct = true;
    132 WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ;
    133 bool save_graph = false;
    134 std::string save_graph_to;
    135 string warp_type = "spherical";
    136 int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
    137 int expos_comp_nr_feeds = 1;
    138 int expos_comp_nr_filtering = 2;
    139 int expos_comp_block_size = 32;
    140 string seam_find_type = "gc_color";
    141 int blend_type = Blender::MULTI_BAND;
    142 int timelapse_type = Timelapser::AS_IS;
    143 float blend_strength = 5;
    144 string result_name = "result.jpg";
    145 bool timelapse = false;
    146 int range_width = -1;
    147  
    148  
    149 static int parseCmdArgs(int argc, char** argv)
    150 {
    151     if (argc == 1)
    152     {
    153         printUsage(argv);
    154         return -1;
    155     }
    156     for (int i = 1; i < argc; ++i)
    157     {
    158         if (string(argv[i]) == "--help" || string(argv[i]) == "/?")
    159         {
    160             printUsage(argv);
    161             return -1;
    162         }
    163         else if (string(argv[i]) == "--preview")
    164         {
    165             preview = true;
    166         }
    167         else if (string(argv[i]) == "--try_cuda")
    168         {
    169             if (string(argv[i + 1]) == "no")
    170                 try_cuda = false;
    171             else if (string(argv[i + 1]) == "yes")
    172                 try_cuda = true;
    173             else
    174             {
    175                 cout << "Bad --try_cuda flag value
    ";
    176                 return -1;
    177             }
    178             i++;
    179         }
    180         else if (string(argv[i]) == "--work_megapix")
    181         {
    182             work_megapix = atof(argv[i + 1]);
    183             i++;
    184         }
    185         else if (string(argv[i]) == "--seam_megapix")
    186         {
    187             seam_megapix = atof(argv[i + 1]);
    188             i++;
    189         }
    190         else if (string(argv[i]) == "--compose_megapix")
    191         {
    192             compose_megapix = atof(argv[i + 1]);
    193             i++;
    194         }
    195         else if (string(argv[i]) == "--result")
    196         {
    197             result_name = argv[i + 1];
    198             i++;
    199         }
    200         else if (string(argv[i]) == "--features")
    201         {
    202             features_type = argv[i + 1];
    203             if (string(features_type) == "orb")
    204                 match_conf = 0.3f;
    205             i++;
    206         }
    207         else if (string(argv[i]) == "--matcher")
    208         {
    209             if (string(argv[i + 1]) == "homography" || string(argv[i + 1]) == "affine")
    210                 matcher_type = argv[i + 1];
    211             else
    212             {
    213                 cout << "Bad --matcher flag value
    ";
    214                 return -1;
    215             }
    216             i++;
    217         }
    218         else if (string(argv[i]) == "--estimator")
    219         {
    220             if (string(argv[i + 1]) == "homography" || string(argv[i + 1]) == "affine")
    221                 estimator_type = argv[i + 1];
    222             else
    223             {
    224                 cout << "Bad --estimator flag value
    ";
    225                 return -1;
    226             }
    227             i++;
    228         }
    229         else if (string(argv[i]) == "--match_conf")
    230         {
    231             match_conf = static_cast<float>(atof(argv[i + 1]));
    232             i++;
    233         }
    234         else if (string(argv[i]) == "--conf_thresh")
    235         {
    236             conf_thresh = static_cast<float>(atof(argv[i + 1]));
    237             i++;
    238         }
    239         else if (string(argv[i]) == "--ba")
    240         {
    241             ba_cost_func = argv[i + 1];
    242             i++;
    243         }
    244         else if (string(argv[i]) == "--ba_refine_mask")
    245         {
    246             ba_refine_mask = argv[i + 1];
    247             if (ba_refine_mask.size() != 5)
    248             {
    249                 cout << "Incorrect refinement mask length.
    ";
    250                 return -1;
    251             }
    252             i++;
    253         }
    254         else if (string(argv[i]) == "--wave_correct")
    255         {
    256             if (string(argv[i + 1]) == "no")
    257                 do_wave_correct = false;
    258             else if (string(argv[i + 1]) == "horiz")
    259             {
    260                 do_wave_correct = true;
    261                 wave_correct = detail::WAVE_CORRECT_HORIZ;
    262             }
    263             else if (string(argv[i + 1]) == "vert")
    264             {
    265                 do_wave_correct = true;
    266                 wave_correct = detail::WAVE_CORRECT_VERT;
    267             }
    268             else
    269             {
    270                 cout << "Bad --wave_correct flag value
    ";
    271                 return -1;
    272             }
    273             i++;
    274         }
    275         else if (string(argv[i]) == "--save_graph")
    276         {
    277             save_graph = true;
    278             save_graph_to = argv[i + 1];
    279             i++;
    280         }
    281         else if (string(argv[i]) == "--warp")
    282         {
    283             warp_type = string(argv[i + 1]);
    284             i++;
    285         }
    286         else if (string(argv[i]) == "--expos_comp")
    287         {
    288             if (string(argv[i + 1]) == "no")
    289                 expos_comp_type = ExposureCompensator::NO;
    290             else if (string(argv[i + 1]) == "gain")
    291                 expos_comp_type = ExposureCompensator::GAIN;
    292             else if (string(argv[i + 1]) == "gain_blocks")
    293                 expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
    294             else if (string(argv[i + 1]) == "channels")
    295                 expos_comp_type = ExposureCompensator::CHANNELS;
    296             else if (string(argv[i + 1]) == "channels_blocks")
    297                 expos_comp_type = ExposureCompensator::CHANNELS_BLOCKS;
    298             else
    299             {
    300                 cout << "Bad exposure compensation method
    ";
    301                 return -1;
    302             }
    303             i++;
    304         }
    305         else if (string(argv[i]) == "--expos_comp_nr_feeds")
    306         {
    307             expos_comp_nr_feeds = atoi(argv[i + 1]);
    308             i++;
    309         }
    310         else if (string(argv[i]) == "--expos_comp_nr_filtering")
    311         {
    312             expos_comp_nr_filtering = atoi(argv[i + 1]);
    313             i++;
    314         }
    315         else if (string(argv[i]) == "--expos_comp_block_size")
    316         {
    317             expos_comp_block_size = atoi(argv[i + 1]);
    318             i++;
    319         }
    320         else if (string(argv[i]) == "--seam")
    321         {
    322             if (string(argv[i + 1]) == "no" ||
    323                 string(argv[i + 1]) == "voronoi" ||
    324                 string(argv[i + 1]) == "gc_color" ||
    325                 string(argv[i + 1]) == "gc_colorgrad" ||
    326                 string(argv[i + 1]) == "dp_color" ||
    327                 string(argv[i + 1]) == "dp_colorgrad")
    328                 seam_find_type = argv[i + 1];
    329             else
    330             {
    331                 cout << "Bad seam finding method
    ";
    332                 return -1;
    333             }
    334             i++;
    335         }
    336         else if (string(argv[i]) == "--blend")
    337         {
    338             if (string(argv[i + 1]) == "no")
    339                 blend_type = Blender::NO;
    340             else if (string(argv[i + 1]) == "feather")
    341                 blend_type = Blender::FEATHER;
    342             else if (string(argv[i + 1]) == "multiband")
    343                 blend_type = Blender::MULTI_BAND;
    344             else
    345             {
    346                 cout << "Bad blending method
    ";
    347                 return -1;
    348             }
    349             i++;
    350         }
    351         else if (string(argv[i]) == "--timelapse")
    352         {
    353             timelapse = true;
    354  
    355             if (string(argv[i + 1]) == "as_is")
    356                 timelapse_type = Timelapser::AS_IS;
    357             else if (string(argv[i + 1]) == "crop")
    358                 timelapse_type = Timelapser::CROP;
    359             else
    360             {
    361                 cout << "Bad timelapse method
    ";
    362                 return -1;
    363             }
    364             i++;
    365         }
    366         else if (string(argv[i]) == "--rangewidth")
    367         {
    368             range_width = atoi(argv[i + 1]);
    369             i++;
    370         }
    371         else if (string(argv[i]) == "--blend_strength")
    372         {
    373             blend_strength = static_cast<float>(atof(argv[i + 1]));
    374             i++;
    375         }
    376         else if (string(argv[i]) == "--output")
    377         {
    378             result_name = argv[i + 1];
    379             i++;
    380         }
    381         else
    382             img_names.push_back(argv[i]);
    383     }
    384     if (preview)
    385     {
    386         compose_megapix = 0.6;
    387     }
    388     return 0;
    389 }
    390  
    391  
    392 int main(int argc, char* argv[])
    393 {
    394 #if ENABLE_LOG
    395     int64 app_start_time = getTickCount();
    396 #endif
    397  
    398 #if 0
    399     cv::setBreakOnError(true);
    400 #endif
    401  
    402     int retval = parseCmdArgs(argc, argv);
    403     if (retval)
    404         return retval;
    405  
    406     // Check if have enough images
    407     int num_images = static_cast<int>(img_names.size());
    408     if (num_images < 2)
    409     {
    410         LOGLN("Need more images");
    411         return -1;
    412     }
    413  
    414     double work_scale = 1, seam_scale = 1, compose_scale = 1;
    415     bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
    416  
    417     LOGLN("Finding features...");
    418 #if ENABLE_LOG
    419     int64 t = getTickCount();
    420 #endif
    421  
    422     Ptr<Feature2D> finder;
    423     if (features_type == "orb")
    424     {
    425         finder = ORB::create();
    426     }
    427     else if (features_type == "akaze")
    428     {
    429         finder = AKAZE::create();
    430     }
    431 #ifdef HAVE_OPENCV_XFEATURES2D
    432     else if (features_type == "surf")
    433     {
    434         finder = xfeatures2d::SURF::create();
    435     }
    436 #endif
    437     else if (features_type == "sift")
    438     {
    439         finder = SIFT::create();
    440     }
    441     else
    442     {
    443         cout << "Unknown 2D features type: '" << features_type << "'.
    ";
    444         return -1;
    445     }
    446  
    447     Mat full_img, img;
    448     vector<ImageFeatures> features(num_images);
    449     vector<Mat> images(num_images);
    450     vector<Size> full_img_sizes(num_images);
    451     double seam_work_aspect = 1;
    452  
    453     for (int i = 0; i < num_images; ++i)
    454     {
    455         full_img = imread(samples::findFile(img_names[i]));
    456         full_img_sizes[i] = full_img.size();
    457  
    458         if (full_img.empty())
    459         {
    460             LOGLN("Can't open image " << img_names[i]);
    461             return -1;
    462         }
    463         if (work_megapix < 0)
    464         {
    465             img = full_img;
    466             work_scale = 1;
    467             is_work_scale_set = true;
    468         }
    469         else
    470         {
    471             if (!is_work_scale_set)
    472             {
    473                 work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
    474                 is_work_scale_set = true;
    475             }
    476             resize(full_img, img, Size(), work_scale, work_scale, INTER_LINEAR_EXACT);
    477         }
    478         if (!is_seam_scale_set)
    479         {
    480             seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
    481             seam_work_aspect = seam_scale / work_scale;
    482             is_seam_scale_set = true;
    483         }
    484  
    485         computeImageFeatures(finder, img, features[i]);
    486         features[i].img_idx = i;
    487         LOGLN("Features in image #" << i + 1 << ": " << features[i].keypoints.size());
    488  
    489         resize(full_img, img, Size(), seam_scale, seam_scale, INTER_LINEAR_EXACT);
    490         images[i] = img.clone();
    491     }
    492  
    493     full_img.release();
    494     img.release();
    495  
    496     LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    497  
    498     LOG("Pairwise matching");
    499 #if ENABLE_LOG
    500     t = getTickCount();
    501 #endif
    502     vector<MatchesInfo> pairwise_matches;
    503     Ptr<FeaturesMatcher> matcher;
    504     if (matcher_type == "affine")
    505         matcher = makePtr<AffineBestOf2NearestMatcher>(false, try_cuda, match_conf);
    506     else if (range_width == -1)
    507         matcher = makePtr<BestOf2NearestMatcher>(try_cuda, match_conf);
    508     else
    509         matcher = makePtr<BestOf2NearestRangeMatcher>(range_width, try_cuda, match_conf);
    510  
    511     (*matcher)(features, pairwise_matches);
    512     matcher->collectGarbage();
    513  
    514     LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    515  
    516     // Check if we should save matches graph
    517     if (save_graph)
    518     {
    519         LOGLN("Saving matches graph...");
    520         ofstream f(save_graph_to.c_str());
    521         f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
    522     }
    523  
    524     // Leave only images we are sure are from the same panorama
    525     vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
    526     vector<Mat> img_subset;
    527     vector<String> img_names_subset;
    528     vector<Size> full_img_sizes_subset;
    529     for (size_t i = 0; i < indices.size(); ++i)
    530     {
    531         img_names_subset.push_back(img_names[indices[i]]);
    532         img_subset.push_back(images[indices[i]]);
    533         full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
    534     }
    535  
    536     images = img_subset;
    537     img_names = img_names_subset;
    538     full_img_sizes = full_img_sizes_subset;
    539  
    540     // Check if we still have enough images
    541     num_images = static_cast<int>(img_names.size());
    542     if (num_images < 2)
    543     {
    544         LOGLN("Need more images");
    545         return -1;
    546     }
    547  
    548     Ptr<Estimator> estimator;
    549     if (estimator_type == "affine")
    550         estimator = makePtr<AffineBasedEstimator>();
    551     else
    552         estimator = makePtr<HomographyBasedEstimator>();
    553  
    554     vector<CameraParams> cameras;
    555     if (!(*estimator)(features, pairwise_matches, cameras))
    556     {
    557         cout << "Homography estimation failed.
    ";
    558         return -1;
    559     }
    560  
    561     for (size_t i = 0; i < cameras.size(); ++i)
    562     {
    563         Mat R;
    564         cameras[i].R.convertTo(R, CV_32F);
    565         cameras[i].R = R;
    566         LOGLN("Initial camera intrinsics #" << indices[i] + 1 << ":
    K:
    " << cameras[i].K() << "
    R:
    " << cameras[i].R);
    567     }
    568  
    569     Ptr<detail::BundleAdjusterBase> adjuster;
    570     if (ba_cost_func == "reproj") adjuster = makePtr<detail::BundleAdjusterReproj>();
    571     else if (ba_cost_func == "ray") adjuster = makePtr<detail::BundleAdjusterRay>();
    572     else if (ba_cost_func == "affine") adjuster = makePtr<detail::BundleAdjusterAffinePartial>();
    573     else if (ba_cost_func == "no") adjuster = makePtr<NoBundleAdjuster>();
    574     else
    575     {
    576         cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.
    ";
    577         return -1;
    578     }
    579     adjuster->setConfThresh(conf_thresh);
    580     Mat_<uchar> refine_mask = Mat::zeros(3, 3, CV_8U);
    581     if (ba_refine_mask[0] == 'x') refine_mask(0, 0) = 1;
    582     if (ba_refine_mask[1] == 'x') refine_mask(0, 1) = 1;
    583     if (ba_refine_mask[2] == 'x') refine_mask(0, 2) = 1;
    584     if (ba_refine_mask[3] == 'x') refine_mask(1, 1) = 1;
    585     if (ba_refine_mask[4] == 'x') refine_mask(1, 2) = 1;
    586     adjuster->setRefinementMask(refine_mask);
    587     if (!(*adjuster)(features, pairwise_matches, cameras))
    588     {
    589         cout << "Camera parameters adjusting failed.
    ";
    590         return -1;
    591     }
    592  
    593     // Find median focal length
    594  
    595     vector<double> focals;
    596     for (size_t i = 0; i < cameras.size(); ++i)
    597     {
    598         LOGLN("Camera #" << indices[i] + 1 << ":
    K:
    " << cameras[i].K() << "
    R:
    " << cameras[i].R);
    599         focals.push_back(cameras[i].focal);
    600     }
    601  
    602     sort(focals.begin(), focals.end());
    603     float warped_image_scale;
    604     if (focals.size() % 2 == 1)
    605         warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
    606     else
    607         warped_image_scale = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
    608  
    609     if (do_wave_correct)
    610     {
    611         vector<Mat> rmats;
    612         for (size_t i = 0; i < cameras.size(); ++i)
    613             rmats.push_back(cameras[i].R.clone());
    614         waveCorrect(rmats, wave_correct);
    615         for (size_t i = 0; i < cameras.size(); ++i)
    616             cameras[i].R = rmats[i];
    617     }
    618  
    619     LOGLN("Warping images (auxiliary)... ");
    620 #if ENABLE_LOG
    621     t = getTickCount();
    622 #endif
    623  
    624     vector<Point> corners(num_images);
    625     vector<UMat> masks_warped(num_images);
    626     vector<UMat> images_warped(num_images);
    627     vector<Size> sizes(num_images);
    628     vector<UMat> masks(num_images);
    629  
    630     // Prepare images masks
    631     for (int i = 0; i < num_images; ++i)
    632     {
    633         masks[i].create(images[i].size(), CV_8U);
    634         masks[i].setTo(Scalar::all(255));
    635     }
    636  
    637     // Warp images and their masks
    638  
    639     Ptr<WarperCreator> warper_creator;
    640 #ifdef HAVE_OPENCV_CUDAWARPING
    641     if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
    642     {
    643         if (warp_type == "plane")
    644             warper_creator = makePtr<cv::PlaneWarperGpu>();
    645         else if (warp_type == "cylindrical")
    646             warper_creator = makePtr<cv::CylindricalWarperGpu>();
    647         else if (warp_type == "spherical")
    648             warper_creator = makePtr<cv::SphericalWarperGpu>();
    649     }
    650     else
    651 #endif
    652     {
    653         if (warp_type == "plane")
    654             warper_creator = makePtr<cv::PlaneWarper>();
    655         else if (warp_type == "affine")
    656             warper_creator = makePtr<cv::AffineWarper>();
    657         else if (warp_type == "cylindrical")
    658             warper_creator = makePtr<cv::CylindricalWarper>();
    659         else if (warp_type == "spherical")
    660             warper_creator = makePtr<cv::SphericalWarper>();
    661         else if (warp_type == "fisheye")
    662             warper_creator = makePtr<cv::FisheyeWarper>();
    663         else if (warp_type == "stereographic")
    664             warper_creator = makePtr<cv::StereographicWarper>();
    665         else if (warp_type == "compressedPlaneA2B1")
    666             warper_creator = makePtr<cv::CompressedRectilinearWarper>(2.0f, 1.0f);
    667         else if (warp_type == "compressedPlaneA1.5B1")
    668             warper_creator = makePtr<cv::CompressedRectilinearWarper>(1.5f, 1.0f);
    669         else if (warp_type == "compressedPlanePortraitA2B1")
    670             warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(2.0f, 1.0f);
    671         else if (warp_type == "compressedPlanePortraitA1.5B1")
    672             warper_creator = makePtr<cv::CompressedRectilinearPortraitWarper>(1.5f, 1.0f);
    673         else if (warp_type == "paniniA2B1")
    674             warper_creator = makePtr<cv::PaniniWarper>(2.0f, 1.0f);
    675         else if (warp_type == "paniniA1.5B1")
    676             warper_creator = makePtr<cv::PaniniWarper>(1.5f, 1.0f);
    677         else if (warp_type == "paniniPortraitA2B1")
    678             warper_creator = makePtr<cv::PaniniPortraitWarper>(2.0f, 1.0f);
    679         else if (warp_type == "paniniPortraitA1.5B1")
    680             warper_creator = makePtr<cv::PaniniPortraitWarper>(1.5f, 1.0f);
    681         else if (warp_type == "mercator")
    682             warper_creator = makePtr<cv::MercatorWarper>();
    683         else if (warp_type == "transverseMercator")
    684             warper_creator = makePtr<cv::TransverseMercatorWarper>();
    685     }
    686  
    687     if (!warper_creator)
    688     {
    689         cout << "Can't create the following warper '" << warp_type << "'
    ";
    690         return 1;
    691     }
    692  
    693     Ptr<RotationWarper> warper = warper_creator->create(static_cast<float>(warped_image_scale * seam_work_aspect));
    694  
    695     for (int i = 0; i < num_images; ++i)
    696     {
    697         Mat_<float> K;
    698         cameras[i].K().convertTo(K, CV_32F);
    699         float swa = (float)seam_work_aspect;
    700         K(0, 0) *= swa; K(0, 2) *= swa;
    701         K(1, 1) *= swa; K(1, 2) *= swa;
    702  
    703         corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
    704         sizes[i] = images_warped[i].size();
    705  
    706         warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
    707     }
    708  
    709     vector<UMat> images_warped_f(num_images);
    710     for (int i = 0; i < num_images; ++i)
    711         images_warped[i].convertTo(images_warped_f[i], CV_32F);
    712  
    713     LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    714  
    715     LOGLN("Compensating exposure...");
    716 #if ENABLE_LOG
    717     t = getTickCount();
    718 #endif
    719  
    720     Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);
    721     if (dynamic_cast<GainCompensator*>(compensator.get()))
    722     {
    723         GainCompensator* gcompensator = dynamic_cast<GainCompensator*>(compensator.get());
    724         gcompensator->setNrFeeds(expos_comp_nr_feeds);
    725     }
    726  
    727     if (dynamic_cast<ChannelsCompensator*>(compensator.get()))
    728     {
    729         ChannelsCompensator* ccompensator = dynamic_cast<ChannelsCompensator*>(compensator.get());
    730         ccompensator->setNrFeeds(expos_comp_nr_feeds);
    731     }
    732  
    733     if (dynamic_cast<BlocksCompensator*>(compensator.get()))
    734     {
    735         BlocksCompensator* bcompensator = dynamic_cast<BlocksCompensator*>(compensator.get());
    736         bcompensator->setNrFeeds(expos_comp_nr_feeds);
    737         bcompensator->setNrGainsFilteringIterations(expos_comp_nr_filtering);
    738         bcompensator->setBlockSize(expos_comp_block_size, expos_comp_block_size);
    739     }
    740  
    741     compensator->feed(corners, images_warped, masks_warped);
    742  
    743     LOGLN("Compensating exposure, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    744  
    745     LOGLN("Finding seams...");
    746 #if ENABLE_LOG
    747     t = getTickCount();
    748 #endif
    749  
    750     Ptr<SeamFinder> seam_finder;
    751     if (seam_find_type == "no")
    752         seam_finder = makePtr<detail::NoSeamFinder>();
    753     else if (seam_find_type == "voronoi")
    754         seam_finder = makePtr<detail::VoronoiSeamFinder>();
    755     else if (seam_find_type == "gc_color")
    756     {
    757 #ifdef HAVE_OPENCV_CUDALEGACY
    758         if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
    759             seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR);
    760         else
    761 #endif
    762             seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR);
    763     }
    764     else if (seam_find_type == "gc_colorgrad")
    765     {
    766 #ifdef HAVE_OPENCV_CUDALEGACY
    767         if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
    768             seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR_GRAD);
    769         else
    770 #endif
    771             seam_finder = makePtr<detail::GraphCutSeamFinder>(GraphCutSeamFinderBase::COST_COLOR_GRAD);
    772     }
    773     else if (seam_find_type == "dp_color")
    774         seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR);
    775     else if (seam_find_type == "dp_colorgrad")
    776         seam_finder = makePtr<detail::DpSeamFinder>(DpSeamFinder::COLOR_GRAD);
    777     if (!seam_finder)
    778     {
    779         cout << "Can't create the following seam finder '" << seam_find_type << "'
    ";
    780         return 1;
    781     }
    782  
    783     seam_finder->find(images_warped_f, corners, masks_warped);
    784  
    785     LOGLN("Finding seams, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    786  
    787     // Release unused memory
    788     images.clear();
    789     images_warped.clear();
    790     images_warped_f.clear();
    791     masks.clear();
    792  
    793     LOGLN("Compositing...");
    794 #if ENABLE_LOG
    795     t = getTickCount();
    796 #endif
    797  
    798     Mat img_warped, img_warped_s;
    799     Mat dilated_mask, seam_mask, mask, mask_warped;
    800     Ptr<Blender> blender;
    801     Ptr<Timelapser> timelapser;
    802     //double compose_seam_aspect = 1;
    803     double compose_work_aspect = 1;
    804  
    805     for (int img_idx = 0; img_idx < num_images; ++img_idx)
    806     {
    807         LOGLN("Compositing image #" << indices[img_idx] + 1);
    808  
    809         // Read image and resize it if necessary
    810         full_img = imread(samples::findFile(img_names[img_idx]));
    811         if (!is_compose_scale_set)
    812         {
    813             if (compose_megapix > 0)
    814                 compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
    815             is_compose_scale_set = true;
    816  
    817             // Compute relative scales
    818             //compose_seam_aspect = compose_scale / seam_scale;
    819             compose_work_aspect = compose_scale / work_scale;
    820  
    821             // Update warped image scale
    822             warped_image_scale *= static_cast<float>(compose_work_aspect);
    823             warper = warper_creator->create(warped_image_scale);
    824  
    825             // Update corners and sizes
    826             for (int i = 0; i < num_images; ++i)
    827             {
    828                 // Update intrinsics
    829                 cameras[i].focal *= compose_work_aspect;
    830                 cameras[i].ppx *= compose_work_aspect;
    831                 cameras[i].ppy *= compose_work_aspect;
    832  
    833                 // Update corner and size
    834                 Size sz = full_img_sizes[i];
    835                 if (std::abs(compose_scale - 1) > 1e-1)
    836                 {
    837                     sz.width = cvRound(full_img_sizes[i].width * compose_scale);
    838                     sz.height = cvRound(full_img_sizes[i].height * compose_scale);
    839                 }
    840  
    841                 Mat K;
    842                 cameras[i].K().convertTo(K, CV_32F);
    843                 Rect roi = warper->warpRoi(sz, K, cameras[i].R);
    844                 corners[i] = roi.tl();
    845                 sizes[i] = roi.size();
    846             }
    847         }
    848         if (abs(compose_scale - 1) > 1e-1)
    849             resize(full_img, img, Size(), compose_scale, compose_scale, INTER_LINEAR_EXACT);
    850         else
    851             img = full_img;
    852         full_img.release();
    853         Size img_size = img.size();
    854  
    855         Mat K;
    856         cameras[img_idx].K().convertTo(K, CV_32F);
    857  
    858         // Warp the current image
    859         warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
    860  
    861         // Warp the current image mask
    862         mask.create(img_size, CV_8U);
    863         mask.setTo(Scalar::all(255));
    864         warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
    865  
    866         // Compensate exposure
    867         compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
    868  
    869         img_warped.convertTo(img_warped_s, CV_16S);
    870         img_warped.release();
    871         img.release();
    872         mask.release();
    873  
    874         dilate(masks_warped[img_idx], dilated_mask, Mat());
    875         resize(dilated_mask, seam_mask, mask_warped.size(), 0, 0, INTER_LINEAR_EXACT);
    876         mask_warped = seam_mask & mask_warped;
    877  
    878         if (!blender && !timelapse)
    879         {
    880             blender = Blender::createDefault(blend_type, try_cuda);
    881             Size dst_sz = resultRoi(corners, sizes).size();
    882             float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
    883             if (blend_width < 1.f)
    884                 blender = Blender::createDefault(Blender::NO, try_cuda);
    885             else if (blend_type == Blender::MULTI_BAND)
    886             {
    887                 MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(blender.get());
    888                 mb->setNumBands(static_cast<int>(ceil(log(blend_width) / log(2.)) - 1.));
    889                 LOGLN("Multi-band blender, number of bands: " << mb->numBands());
    890             }
    891             else if (blend_type == Blender::FEATHER)
    892             {
    893                 FeatherBlender* fb = dynamic_cast<FeatherBlender*>(blender.get());
    894                 fb->setSharpness(1.f / blend_width);
    895                 LOGLN("Feather blender, sharpness: " << fb->sharpness());
    896             }
    897             blender->prepare(corners, sizes);
    898         }
    899         else if (!timelapser && timelapse)
    900         {
    901             timelapser = Timelapser::createDefault(timelapse_type);
    902             timelapser->initialize(corners, sizes);
    903         }
    904  
    905         // Blend the current image
    906         if (timelapse)
    907         {
    908             timelapser->process(img_warped_s, Mat::ones(img_warped_s.size(), CV_8UC1), corners[img_idx]);
    909             String fixedFileName;
    910             size_t pos_s = String(img_names[img_idx]).find_last_of("/\");
    911             if (pos_s == String::npos)
    912             {
    913                 fixedFileName = "fixed_" + img_names[img_idx];
    914             }
    915             else
    916             {
    917                 fixedFileName = "fixed_" + String(img_names[img_idx]).substr(pos_s + 1, String(img_names[img_idx]).length() - pos_s);
    918             }
    919             imwrite(fixedFileName, timelapser->getDst());
    920         }
    921         else
    922         {
    923             blender->feed(img_warped_s, mask_warped, corners[img_idx]);
    924         }
    925     }
    926  
    927     if (!timelapse)
    928     {
    929         Mat result, result_mask;
    930         blender->blend(result, result_mask);
    931  
    932         LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
    933  
    934         imwrite(result_name, result);
    935     }
    936  
    937     LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
    938     return 0;
    939 }

    stitching_detail 程序运行流程

    • 命令行调用程序,输入源图像以及程序的参数      
    • 特征点检测,判断是使用 surf 还是 orb,默认是 surf
    • 对图像的特征点进行匹配,使用最近邻和次近邻方法,将两个最优的匹配的置信度 保存下来
    • 对图像进行排序以及将置信度高的图像保存到同一个集合中,删除置信度比较低的图像间的匹配,得到能正确匹配的图像序列。这样将置信度高于门限的所有匹配合并到一个集合中 
    • 对所有图像进行相机参数粗略估计,然后求出旋转矩阵
    • 使用光束平均法进一步精准的估计出旋转矩阵
    • 波形校正,水平或者垂直
    • 拼接      
    • 融合,多频段融合,光照补偿

    stitching_detail 程序接口介绍 

    • img1 img2 img3 输入图像      
    • --preview  以预览模式运行程序,比正常模式要快,但输出图像分辨率低,拼接的分辨 率 compose_megapix 设置为 0.6
    • --try_gpu  (yes|no)  是否使用 CUDA加速,默认为 no,使用CPU模式
    • /* 运动估计参数 */    
    • --work_megapix <--work_megapix <float>> 图像匹配时的分辨率大小,默认为 0.6    
    • --features (surf | orb | sift | akaze) 选择 surf 或者 orb 算法进行特征点匹配,默认为 surf  
    • --matcher (homography | affine) 用于成对图像匹配的匹配器  
    • --estimator (homography | affine) 用于转换估计的估计器类型
    • --match_conf <float> 特征点匹配步骤的匹配置信度,最近邻匹配距离与次近邻匹配距离的比值,surf 默认为 0.65,orb 默认为 0.3    
    • --conf_thresh <float> 两幅图来自同一全景图的置信度,默认为 1.0    
    • --ba (no | reproj | ray | affine) 光束平均法的误差函数选择,默认是 ray 方法    
    • --ba_refine_mask (mask) 光束平均法设置优化掩码
    • --wave_correct (no|horiz|vert) 波形校验水平,垂直或者没有 默认是 horiz(水平)
    • --save_graph <file_name> 将匹配的图形以点的形式保存到文件中, Nm 代表匹配的数量,NI代表正确匹配的数量,C 表示置信度
    • /*图像融合参数:*/ 
    • --warp (plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPla  neA1.5B1|compressedPlanePortraitA2B1|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPor traitA1.5B1|mercator|transverseMercator)     选择融合的平面,默认是球形    
    • --seam_megapix <float> 拼接缝像素的大小 默认是 0.1
    • --seam (no|voronoi|gc_color|gc_colorgrad) 拼接缝隙估计方法 默认是 gc_color    
    • --compose_megapix <float> 拼接分辨率,默认为-1    
    • --expos_comp (no|gain|gain_blocks) 光照补偿方法,默认是 gain_blocks    
    • --blend (no|feather|multiband) 融合方法,默认是多频段融合    
    • --blend_strength <float> 融合强度,0-100.默认是 5.    
    • --output <result_img> 输出图像的文件名,默认是 result,jpg     命令使用实例,以及程序运行时的提示: 

    上面使用默认参数,详细输出信息如下:

      1 E:PracticeOpenCVAlgorithm_SummaryImage_Stitchingx64Debug>05_Image_Stitch_Stitching_Detailed.exe ./imgs/boat1.jpg ./imgs/boat2.jpg ./imgs/boat3.jpg ./imgs/boat4.jpg ./imgs/boat5.jpg ./imgs/boat6.jpg
      2 Finding features...
      3 [ INFO:0] global C:uildmaster_winpack-build-win64-vc15opencvmodulescoresrcocl.cpp (891) cv::ocl::haveOpenCL Initialize OpenCL runtime...
      4 Features in image #1: 500
      5 [ INFO:0] global C:uildmaster_winpack-build-win64-vc15opencvmodulescoresrcocl.cpp (433) cv::ocl::OpenCLBinaryCacheConfigurator::OpenCLBinaryCacheConfigurator Successfully initialized OpenCL cache directory: C:UsersA4080599AppDataLocalTempopencv4.4opencl_cache
      6 [ INFO:0] global C:uildmaster_winpack-build-win64-vc15opencvmodulescoresrcocl.cpp (457) cv::ocl::OpenCLBinaryCacheConfigurator::prepareCacheDirectoryForContext Preparing OpenCL cache configuration for context: NVIDIA_Corporation--GeForce_GTX_1070--411_31
      7 Features in image #2: 500
      8 Features in image #3: 500
      9 Features in image #4: 500
     10 Features in image #5: 500
     11 Features in image #6: 500
     12 Finding features, time: 5.46377 sec
     13 Pairwise matchingPairwise matching, time: 3.24159 sec
     14 Initial camera intrinsics #1:
     15 K:
     16 [534.6674906996568, 0, 474.5;
     17  0, 534.6674906996568, 316;
     18  0, 0, 1]
     19 R:
     20 [0.91843718, -0.09762425, -1.1678253;
     21  0.0034433089, 1.0835428, -0.025021957;
     22  0.28152198, 0.16100603, 0.91920781]
     23 Initial camera intrinsics #2:
     24 K:
     25 [534.6674906996568, 0, 474.5;
     26  0, 534.6674906996568, 316;
     27  0, 0, 1]
     28 R:
     29 [1.001171, -0.085758291, -0.64530683;
     30  0.010103324, 1.0520245, -0.030576767;
     31  0.15743911, 0.12035993, 1]
     32 Initial camera intrinsics #3:
     33 K:
     34 [534.6674906996568, 0, 474.5;
     35  0, 534.6674906996568, 316;
     36  0, 0, 1]
     37 R:
     38 [1, 0, 0;
     39  0, 1, 0;
     40  0, 0, 1]
     41 Initial camera intrinsics #4:
     42 K:
     43 [534.6674906996568, 0, 474.5;
     44  0, 534.6674906996568, 316;
     45  0, 0, 1]
     46 R:
     47 [0.8474561, 0.028589081, 0.75133896;
     48  -0.0014587968, 0.92028928, 0.033205934;
     49  -0.17483309, 0.018777205, 0.84592116]
     50 Initial camera intrinsics #5:
     51 K:
     52 [534.6674906996568, 0, 474.5;
     53  0, 534.6674906996568, 316;
     54  0, 0, 1]
     55 R:
     56 [0.60283858, 0.069275051, 1.2121853;
     57  -0.014153662, 0.85474133, 0.014057174;
     58  -0.29529575, 0.053770453, 0.61932623]
     59 Initial camera intrinsics #6:
     60 K:
     61 [534.6674906996568, 0, 474.5;
     62  0, 534.6674906996568, 316;
     63  0, 0, 1]
     64 R:
     65 [0.41477469, 0.075901195, 1.4396564;
     66  -0.015423983, 0.82344943, 0.0061162044;
     67  -0.35168326, 0.055747174, 0.42653102]
     68 Camera #1:
     69 K:
     70 [1068.953598931666, 0, 474.5;
     71  0, 1068.953598931666, 316;
     72  0, 0, 1]
     73 R:
     74 [0.84266716, -0.010490002, -0.53833258;
     75  0.004485324, 0.99991232, -0.01246338;
     76  0.53841609, 0.0080878884, 0.84264034]
     77 Camera #2:
     78 K:
     79 [1064.878323247434, 0, 474.5;
     80  0, 1064.878323247434, 316;
     81  0, 0, 1]
     82 R:
     83 [0.95117813, -0.015436338, -0.3082563;
     84  0.01137107, 0.99982315, -0.014980057;
     85  0.308433, 0.010743499, 0.95118535]
     86 Camera #3:
     87 K:
     88 [1065.382193682081, 0, 474.5;
     89  0, 1065.382193682081, 316;
     90  0, 0, 1]
     91 R:
     92 [1, -1.6298145e-09, 0;
     93  -1.5716068e-09, 1, 0;
     94  0, 0, 1]
     95 Camera #4:
     96 K:
     97 [1067.611537959627, 0, 474.5;
     98  0, 1067.611537959627, 316;
     99  0, 0, 1]
    100 R:
    101 [0.91316396, -7.9067249e-06, 0.40759254;
    102  -0.0075879274, 0.99982637, 0.017019274;
    103  -0.4075219, -0.018634165, 0.91300529]
    104 Camera #5:
    105 K:
    106 [1080.708135180496, 0, 474.5;
    107  0, 1080.708135180496, 316;
    108  0, 0, 1]
    109 R:
    110 [0.70923853, 0.0025724203, 0.70496398;
    111  -0.0098195076, 0.99993235, 0.0062302947;
    112  -0.70490021, -0.01134116, 0.70921582]
    113 Camera #6:
    114 K:
    115 [1080.90412660159, 0, 474.5;
    116  0, 1080.90412660159, 316;
    117  0, 0, 1]
    118 R:
    119 [0.49985889, 3.5938341e-05, 0.86610687;
    120  -0.00682831, 0.99996907, 0.0038993564;
    121  -0.86607999, -0.0078631733, 0.49984369]
    122 Warping images (auxiliary)...
    123 Warping images, time: 0.0791121 sec
    124 Compensating exposure...
    125 Compensating exposure, time: 0.72288 sec
    126 Finding seams...
    127 Finding seams, time: 3.09237 sec
    128 Compositing...
    129 Compositing image #1
    130 Multi-band blender, number of bands: 8
    131 Compositing image #2
    132 Compositing image #3
    133 Compositing image #4
    134 Compositing image #5
    135 Compositing image #6
    136 Compositing, time: 13.7766 sec
    137 Finished, total time: 29.4535 sec

    输入图像boat1.jpg、boat2.jpg、boat3.jpg、boat4.jpg、boat5.jpg、boat6.jpg如下(可以在OpenCV安装目录下找到D:OpenCV4.4opencv_extra-master estdatastitching)

     

     

     

    结果图:

    参数warp_type 设置为"plane",效果图如下:

    参数warp_type 设置为"fisheye",效果图如下(旋转90°后):

    其他的参数可以根据自己需要修改,如果要自己完成还需要详细了解拼接步骤再优化。

  • 相关阅读:
    用Groovy处理JMeter变量
    用Groovy处理JMeter断言和日志
    选择手动测试还是自动化测试?
    从单元测试标准中学习
    利用ThreadLocal解决线程同步问题
    JSON基础
    Java中interface属性和实例方法
    集成测试、单元测试、系统测试
    异步查询转同步加redis业务实现的BUG分享
    《深入理解java虚拟机》读书笔记三——第四章
  • 原文地址:https://www.cnblogs.com/ybqjymy/p/14182716.html
Copyright © 2020-2023  润新知