• OpenCV 加速图像处理


    • OpenCV库包括了对OpenCL和CUDA GPU架构的支持。
    • OpenCL(Open Computing Language):开放计算语言,可以附加在主机处理器的CPU或GPU上执行。
    • OpenCV有一个新的统一数据结构UMat,用于在必要和可能的时候,负责将数据传输到GPU。
    • 目前,有5个可用的OpenCL SDK:AMD APP SDK、Intel SDK、IBM OpenCL开发工具包、IBM OpenCL公共运行库、Nvidia OpenCL驱动程序和工具。

     

    检查你的OpenCL是否可用

     1 #include <iostream>
     2 #include <opencv2/core/ocl.hpp>
     3 #include <opencv2/opencv.hpp>
     4  
     5 using namespace std;
     6 using namespace cv;
     7 using namespace cv::ocl;
     8  
     9 int main()
    10 {
    11     vector<ocl::PlatformInfo> info;
    12     getPlatfomsInfo(info);
    13     PlatformInfo sdk = info.at(0);
    14  
    15     if (sdk.deviceNumber() < 1)
    16         return -1;
    17  
    18     cout << "***********SDK************" << endl;
    19     cout << "Name:" << sdk.name() << endl;
    20     cout << "Vendor:" << sdk.vendor() << endl;
    21     cout << "Version:" << sdk.version() << endl;
    22     cout << "Version:" << sdk.version() << endl;
    23     cout << "Number of devices:" << sdk.deviceNumber() << endl;
    24  
    25     for (int i = 0; i < sdk.deviceNumber(); i++) {
    26         cout << endl;
    27         Device device;
    28         sdk.getDevice(device, i);
    29         cout << "************* Device " << i + 1 << endl;
    30  
    31         cout << "Vendor Id:" << device.vendorID() << endl;
    32         cout << "Vendor name:" << device.vendorName() << endl;
    33         cout << "Name:" << device.name() << endl;
    34         cout << "Driver version:" << device.vendorID() << endl;
    35         if (device.isAMD()) cout << "Is AMD device" << endl;
    36         if (device.isIntel()) cout << "Is Intel device" << endl;
    37         if (device.isNVidia()) cout << "Is NVidia device" << endl;
    38  
    39         cout << "Global Memory size:" << device.globalMemSize() << endl;
    40         cout << "Memory cache size:" << device.globalMemCacheSize() << endl;
    41         cout << "Memory cache type:" << device.globalMemCacheType() << endl;
    42         cout << "Local Memory size:" << device.localMemSize() << endl;
    43         cout << "Local Memory type:" << device.localMemType() << endl;
    44         cout << "Max Clock frequency:" << device.maxClockFrequency() << endl;
    45     }
    46     getchar();
    47  
    48     return 0;
    49 }

     

    CPU和GPU处理对比

     1 #include <iostream>
     2 #include <opencv2/core/ocl.hpp>
     3 #include <opencv2/opencv.hpp>
     4  
     5 using namespace std;
     6 using namespace cv;
     7 using namespace cv::ocl;
     8  
     9 void calEdgesCPU(void);
    10 void calEdgesGPU(void);
    11  
    12 int main()
    13 {
    14     calEdgesCPU();
    15     calEdgesGPU();
    16     getchar();
    17  
    18     return 0;
    19 }
    20  
    21 void calEdgesCPU() {
    22     double start=getTickCount();
    23     Mat cpuBw, cpuBlur, cpuEdges;
    24     Mat cpuFrame = imread("test.jpg");
    25     //namedWindow("Canny Edges CPU", 1);
    26     cvtColor(cpuFrame, cpuBw, COLOR_BGR2GRAY);
    27     GaussianBlur(cpuBw, cpuBlur, Size(1, 1), 1.5, 1.5);
    28     Canny(cpuBlur, cpuEdges, 50, 100, 3);
    29     //imshow("Canny Edges CPU", cpuEdges);
    30     cout << "CPU cost time:" << ((getTickCount() - start) / getTickFrequency()) << endl;
    31 }
    32  
    33 void calEdgesGPU() {
    34     setUseOpenCL(true);
    35     double start = getTickCount();
    36     UMat gpuBw, gpuBlur, gpuEdges,gpuFrame;
    37     Mat cpuFrame = imread("test.jpg");
    38     cpuFrame.copyTo(gpuFrame);
    39  
    40     //namedWindow("Canny Edges GPU", 1);
    41     cvtColor(gpuFrame, gpuBw, COLOR_BGR2GRAY);
    42     GaussianBlur(gpuBw, gpuBlur, Size(1, 1), 1.5, 1.5);
    43     Canny(gpuBlur, gpuEdges, 50, 100, 3);
    44     //imshow("Canny Edges CPU", gpuEdges);
    45     cout << "GPU cost time:" << ((getTickCount() - start) / getTickFrequency()) << endl;
    46 }

     

    人脸辨认、GPU和CPU处理区别

     1 #include <iostream>
     2 #include <opencv2/core/core.hpp>
     3 #include <opencv2/core/ocl.hpp>
     4 #include <opencv2/objdetect.hpp>
     5 #include <opencv2/videoio.hpp>
     6 #include <opencv2/highgui.hpp>
     7 #include <opencv2/imgproc.hpp>
     8  
     9  
    10 using namespace std;
    11 using namespace cv;
    12 using namespace cv::ocl;
    13  
    14 int main()
    15 {
    16     //1-设置初始参数
    17     //用来存储人脸的向量
    18     vector<Rect> faces;
    19     CascadeClassifier face_cascade;
    20     String face_cascade_name = "D:\OpenCV\opencv\sources\data\haarcascades_cuda\haarcascade_frontalface_alt.xml";
    21     int face_size = 30;
    22     double scale_factor = 1.1;
    23     int min_neighbours = 2;
    24  
    25     VideoCapture cap(0);
    26     UMat frame, frameGray;
    27     bool finish = false;
    28  
    29     //2-加载xml文件,以使用分类器
    30     if (!face_cascade.load(face_cascade_name)) {
    31         cout << "Cannot load the face xml" << endl;
    32         return -1;
    33     }
    34     namedWindow("Video Capture");
    35  
    36     //3-选择用CPU处理还是GPU处理
    37     bool cpu_gpu = false;
    38     setUseOpenCL(cpu_gpu);
    39  
    40     Rect r;
    41     double start_time, finish_time, start_total_time, finish_total_time;
    42     int counter = 0;
    43  
    44     //4-为每幅拍摄图像检测人脸
    45     start_total_time = getTickCount();
    46     while (!finish) {
    47         start_time = getTickCount();
    48         cap >> frame;
    49         if (frame.empty()) {
    50             cout << "No capture frame" << endl;
    51             break;
    52         }
    53         cvtColor(frame, frameGray, COLOR_BGR2GRAY);
    54         equalizeHist(frameGray, frameGray);
    55         //检测人脸
    56         face_cascade.detectMultiScale(frameGray, faces, scale_factor, min_neighbours, 0 | CASCADE_SCALE_IMAGE, Size(face_size, face_size));
    57         //对每个检测到的人脸
    58         for (int f = 0; f < faces.size(); f++) {
    59             r = faces[f];
    60             //在人脸上画框
    61             rectangle(frame, Point(r.x, r.y), Point(r.x + r.width, r.y + r.height), Scalar(0, 255, 0), 3);
    62         }
    63         imshow("Video Capture", frame);
    64         //计算处理时间
    65         finish_time = getTickCount();
    66         //cout << "Time per frame:" << (finish_time - start_time) / getTickFrequency() << "sec" << endl;
    67         counter++;
    68             //按下Esc结束
    69             if (waitKey(1) == 27) finish = true;
    70             
    71     }
    72     finish_total_time = getTickCount();
    73     cout << "Average time per frame:" << ((finish_total_time - start_total_time) / getTickFrequency() / counter) <<"sec"<< endl;
    74  
    75     getchar();
    76  
    77     return 0;
    78 }

    GPU平均时间:

    CPU平均时间:

  • 相关阅读:
    jquery validate常用方法及注意问题
    jQuery Validate
    $('div','li') 和 $('div , li') 和 $('div li') 区别
    HTML中Div、span、label标签的区别
    Java中访问修饰符public、private、protecte、default
    shiro过滤器过滤属性含义
    (转载)常用Git命令清单
    Git-简明指南
    菜鸟程序员怎么才能提高自己的技术--(献给自己共勉)
    Visiual Studio CLR20r3问题
  • 原文地址:https://www.cnblogs.com/ybqjymy/p/13691132.html
Copyright © 2020-2023  润新知