• flinkrestApi项目应用


    场景:flink1.14.0   通过restApi操作flink集群(standalone),能力有限,目前的项目使用Flink比较原始

    官网的restApi文档真的写的一塌糊涂,传参和返回结果示例,请求路径(占位符用冒号表示),明显不是搞web项目的人写的

    这里只记录几个重要的,以及常用的,flink webUI上可以直接进行各种操作,只要这上面有的,restApi都支持,就是界面比较技术化

    官网地址:

    https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/ops/rest_api/

    单个job的操作

    1、提交一个job

    POST    /jars/<jarName>/run

    排坑:(1)jar只要在flink-conf.yaml中的web.upload.dir下即可,jarName就是这个jar包的全名,包括后缀

    (2)POST请求的参数必须是json字符串,不能是form(也就是body),坑不坑爹,官网讲的不清楚

    (3)提供的入参包括:

    allowNoneRestoredState:是否允许跳过无法还原的savepoint的状态,继续运行这个job

    savepointPath:                 保存点,提供了就表示是重启job操作,不提供就是run一个job

    entryClass:                       主类的全名

    parallelism:                       job的并行度

    programArgs:                   这个是main函数的入参

    (4)即使启动job失败,返回仍然是一个json结果,失败时包含errors属性,成功则返回jobid如下

    返回示例:

    {"jobid":"b41ec6f1e7f7eb91f49db17e4483fa42"}

    2、查询这个job的detail

    GET /jobs/<jobId>

    返回示例

    {
        "jid":"0dca134dbbe841d617f3593dfe5f8c2e",
        "name":"insert-into_default_catalog.default_database.sink220325101420191tL84",
        "isStoppable":false,
        "state":"RUNNING",
        "start-time":1648179253170,
        "end-time":-1,
        "duration":277303407,
        "maxParallelism":-1,
        "now":1648456556577,
        "timestamps":{
            "INITIALIZING":1648179253170,
            "CANCELED":0,
            "RECONCILING":0,
            "SUSPENDED":0,
            "FAILING":0,
            "RESTARTING":0,
            "RUNNING":1648179253198,
            "FINISHED":0,
            "FAILED":0,
            "CREATED":1648179253177,
            "CANCELLING":0
        },
        "vertices":[
            {
                "id":"cbc357ccb763df2852fee8c4fc7d55f2",
                "name":"Source: KafkaSource-default_catalog.default_database.source220325101420192qXKx -&gt; Calc(select=[operator, sourceHost, Reinterpret(TO_TIMESTAMP(timestamp, _UTF-16LE'yyyy-MM-dd HH:mm:ss')) AS ts], where=[(weight &gt; 2)])",
                "maxParallelism":128,
                "parallelism":1,
                "status":"RUNNING",
                "start-time":1648179253253,
                "end-time":-1,
                "duration":277303324,
                "tasks":{
                    "SCHEDULED":0,
                    "DEPLOYING":0,
                    "FINISHED":0,
                    "CANCELING":0,
                    "CREATED":0,
                    "RUNNING":1,
                    "CANCELED":0,
                    "FAILED":0,
                    "RECONCILING":0,
                    "INITIALIZING":0
                },
                "metrics":{
                    "read-bytes":42814532,
                    "read-bytes-complete":true,
                    "write-bytes":178520,
                    "write-bytes-complete":true,
                    "read-records":0,
                    "read-records-complete":true,
                    "write-records":1886,
                    "write-records-complete":true
                }
            },
            {
                "id":"9dd63673dd41ea021b896d5203f3ba7c",
                "name":"LocalWindowAggregate(groupBy=[operator, sourceHost], window=[TUMBLE(time_col=[ts], size=[2 h])], select=[operator, sourceHost, COUNT(*) AS count1$0, slice_end('w$) AS $slice_end])",
                "maxParallelism":128,
                "parallelism":1,
                "status":"RUNNING",
                "start-time":1648179253259,
                "end-time":-1,
                "duration":277303318,
                "tasks":{
                    "SCHEDULED":0,
                    "DEPLOYING":0,
                    "FINISHED":0,
                    "CANCELING":0,
                    "CREATED":0,
                    "RUNNING":1,
                    "CANCELED":0,
                    "FAILED":0,
                    "RECONCILING":0,
                    "INITIALIZING":0
                },
                "metrics":{
                    "read-bytes":194183,
                    "read-bytes-complete":true,
                    "write-bytes":129496,
                    "write-bytes-complete":true,
                    "read-records":1886,
                    "read-records-complete":true,
                    "write-records":1021,
                    "write-records-complete":true
                }
            },
            {
                "id":"e883208d19e3c34f8aaf2a3168a63337",
                "name":"GlobalWindowAggregate(groupBy=[operator, sourceHost], window=[TUMBLE(slice_end=[$slice_end], size=[2 h])], select=[operator, sourceHost, COUNT(count1$0) AS metric_count, start('w$) AS window_start, end('w$) AS window_end]) -&gt; Calc(select=[UUID() AS id, _UTF-16LE'220325101420191HqBW' AS rule_key, _UTF-16LE'B3-测试高级规则' AS rule_name, 10 AS metric_threshold, 0 AS audit_status, 0 AS audit_comment_num, window_start, window_end, operator, sourceHost, metric_count], where=[(metric_count &gt; 10)]) -&gt; NotNullEnforcer(fields=[id]) -&gt; Sink: Sink(table=[default_catalog.default_database.sink220325101420191tL84], fields=[id, rule_key, rule_name, metric_threshold, audit_status, audit_comment_num, window_start, window_end, operator, sourceHost, metric_count])",
                "maxParallelism":128,
                "parallelism":1,
                "status":"RUNNING",
                "start-time":1648179253264,
                "end-time":-1,
                "duration":277303313,
                "tasks":{
                    "SCHEDULED":0,
                    "DEPLOYING":0,
                    "FINISHED":0,
                    "CANCELING":0,
                    "CREATED":0,
                    "RUNNING":1,
                    "CANCELED":0,
                    "FAILED":0,
                    "RECONCILING":0,
                    "INITIALIZING":0
                },
                "metrics":{
                    "read-bytes":145094,
                    "read-bytes-complete":true,
                    "write-bytes":0,
                    "write-bytes-complete":true,
                    "read-records":1021,
                    "read-records-complete":true,
                    "write-records":0,
                    "write-records-complete":true
                }
            }
        ],
        "status-counts":{
            "SCHEDULED":0,
            "DEPLOYING":0,
            "FINISHED":0,
            "CANCELING":0,
            "CREATED":0,
            "RUNNING":3,
            "CANCELED":0,
            "FAILED":0,
            "RECONCILING":0,
            "INITIALIZING":0
        },
        "plan":{
            "jid":"0dca134dbbe841d617f3593dfe5f8c2e",
            "name":"insert-into_default_catalog.default_database.sink220325101420191tL84",
            "type":"STREAMING",
            "nodes":[
                {
                    "id":"e883208d19e3c34f8aaf2a3168a63337",
                    "parallelism":1,
                    "operator":"",
                    "operator_strategy":"",
                    "description":"GlobalWindowAggregate(groupBy=[operator, sourceHost], window=[TUMBLE(slice_end=[$slice_end], size=[2 h])], select=[operator, sourceHost, COUNT(count1$0) AS metric_count, start('w$) AS window_start, end('w$) AS window_end]) -&gt; Calc(select=[UUID() AS id, _UTF-16LE'220325101420191HqBW' AS rule_key, _UTF-16LE'B3-测试高级规则' AS rule_name, 10 AS metric_threshold, 0 AS audit_status, 0 AS audit_comment_num, window_start, window_end, operator, sourceHost, metric_count], where=[(metric_count &gt; 10)]) -&gt; NotNullEnforcer(fields=[id]) -&gt; Sink: Sink(table=[default_catalog.default_database.sink220325101420191tL84], fields=[id, rule_key, rule_name, metric_threshold, audit_status, audit_comment_num, window_start, window_end, operator, sourceHost, metric_count])",
                    "inputs":[
                        {
                            "num":0,
                            "id":"9dd63673dd41ea021b896d5203f3ba7c",
                            "ship_strategy":"HASH",
                            "exchange":"pipelined_bounded"
                        }
                    ],
                    "optimizer_properties":{
    
                    }
                },
                {
                    "id":"9dd63673dd41ea021b896d5203f3ba7c",
                    "parallelism":1,
                    "operator":"",
                    "operator_strategy":"",
                    "description":"LocalWindowAggregate(groupBy=[operator, sourceHost], window=[TUMBLE(time_col=[ts], size=[2 h])], select=[operator, sourceHost, COUNT(*) AS count1$0, slice_end('w$) AS $slice_end])",
                    "inputs":[
                        {
                            "num":0,
                            "id":"cbc357ccb763df2852fee8c4fc7d55f2",
                            "ship_strategy":"FORWARD",
                            "exchange":"pipelined_bounded"
                        }
                    ],
                    "optimizer_properties":{
    
                    }
                },
                {
                    "id":"cbc357ccb763df2852fee8c4fc7d55f2",
                    "parallelism":1,
                    "operator":"",
                    "operator_strategy":"",
                    "description":"Source: KafkaSource-default_catalog.default_database.source220325101420192qXKx -&gt; Calc(select=[operator, sourceHost, Reinterpret(TO_TIMESTAMP(timestamp, _UTF-16LE'yyyy-MM-dd HH:mm:ss')) AS ts], where=[(weight &gt; 2)])",
                    "optimizer_properties":{
    
                    }
                }
            ]
        }
    } 

    3、取消或停止一个job

    POST /jobs/<jobId>/stop

    又是一个很坑的接口,这次传参,又必须是form参数,也就是通过body传参,只有这个接口可以指定savepoint的位置

    入参:

    drain:一个bool值,在获取savepoint,停止pipeline之前发送MAX_WATERMARK,一般给true

    targetDirectory:savepoint的位置,这里填写一个绝对路径的位置,如   /opt/flink-1.14.0/aaa,如果不指定,默认使用flink-conf里配置的state.savepoints.dir的值,我是使用默认路径,让flink自己生成

    返回结果:

    {"request-id":"a3554aaa2c59e95b3053c43fcb5570d5"}

    这个需要配合另一个接口一起使用,因为stop接口可能不会立即结束,先返回一个request-id,后面用这个参数查询stop的结果,会返回savepoints的位置,客户端保存下来

    4、查询取消/停止job的结果

    GET   /jobs/<jobId>/savepoints/<requestId>

    返回示例:

    {
        "status":{
            "id":"COMPLETED"
        },
        "operation":{
            "location":"file:/opt/flink-1.14.0/flink-savepoints/savepoint-4c46ac-310609cbea53"
        }
    }

    下次重启job的时候需要带上这个savepoints

    5、重启一个job

    重启一个job的接口和run的接口一样,不同的是需要额外提供savepoints参数的值

    6、查询某个job的checkpoints的统计信息

    GET         /jobs/<jobId>/checkpoints

    返回示例:(json格式)包含了这个job的checkpoints最后一次成功触发后的_metadata位置:latest.completed.external_path

    如果集群意外挂掉,并且有这个文件的话,可以使用这个文件来重启job

    {
      "counts":{
        "restored":0,
        "total":25616,
        "in_progress":0,
        "completed":25616,
        "failed":0
      },
      "summary":{
        "state_size":{
          "min":5911,"max":6375,"avg":6033,"p50":6027.0,"p90":6027.0,"p95":6027.0,"p99":6027.0,"p999":6027.0
        },
        "end_to_end_duration":{
          "min":3,"max":548,"avg":6,"p50":5.0,"p90":6.0,"p95":9.0,"p99":12.0,"p999":44.999000000001615
        },
        "alignment_buffered":{
          "min":0,"max":0,"avg":0,"p50":0.0,"p90":0.0,"p95":0.0,"p99":0.0,"p999":0.0
        },
        "processed_data":{
          "min":0,"max":0,"avg":0,"p50":0.0,"p90":0.0,"p95":0.0,"p99":0.0,"p999":0.0
        },
        "persisted_data":{
          "min":0,"max":0,"avg":0,"p50":0.0,"p90":0.0,"p95":0.0,"p99":0.0,"p999":0.0
        }
      },
      "latest":{
        "completed":{
          "@class":"completed",
          "id":25616,
          "status":"COMPLETED",
          "is_savepoint":false,
          "trigger_timestamp":1648188076643,
          "latest_ack_timestamp":1648188076648,
          "state_size":6027,
          "end_to_end_duration":5,
          "alignment_buffered":0,
          "processed_data":0,
          "persisted_data":0,
          "num_subtasks":3,
          "num_acknowledged_subtasks":3,
          "checkpoint_type":"CHECKPOINT",
          "tasks":{},
          "external_path":"file:/opt/hikvision/idatafusion/flink-1.14.0/local-checkpoints/3560f8db528b3fb640e2b5a7db89af2d/chk-25616",
          "discarded":false
        },
        "savepoint":null,
        "failed":null,
        "restored":null
      },
      "history":[{"@class":"completed","id":25616,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1648188076643,"latest_ack_timestamp":1648188076648,"state_size":6027,"end_to_end_duration":5,"alignment_buffered":0,"processed_data":0,"persisted_data":0,"num_subtasks":3,"num_acknowledged_subtasks":3,"checkpoint_type":"CHECKPOINT","tasks":{},"external_path":"file:/opt/hikvision/idatafusion/flink-1.14.0/local-checkpoints/3560f8db528b3fb640e2b5a7db89af2d/chk-25616","discarded":false},{"@class":"completed","id":25615,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1648188016643,"latest_ack_timestamp":1648188016649,"state_size":6027,"end_to_end_duration":6,"alignment_buffered":0,"processed_data":0,"persisted_data":0,"num_subtasks":3,"num_acknowledged_subtasks":3,"checkpoint_type":"CHECKPOINT","tasks":{},"external_path":"file:/opt/hikvision/idatafusion/flink-1.14.0/local-checkpoints/3560f8db528b3fb640e2b5a7db89af2d/chk-25615","discarded":true},{"@class":"completed","id":25614,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1648187956643,"latest_ack_timestamp":1648187956649,"state_size":6027,"end_to_end_duration":6,"alignment_buffered":0,"processed_data":0,"persisted_data":0,"num_subtasks":3,"num_acknowledged_subtasks":3,"checkpoint_type":"CHECKPOINT","tasks":{},"external_path":"file:/opt/hikvision/idatafusion/flink-1.14.0/local-checkpoints/3560f8db528b3fb640e2b5a7db89af2d/chk-25614","discarded":true},{"@class":"completed","id":25613,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1648187896643,"latest_ack_timestamp":1648187896656,"state_size":6027,"end_to_end_duration":13,"alignment_buffered":0,"processed_data":0,"persisted_data":0,"num_subtasks":3,"num_acknowledged_subtasks":3,"checkpoint_type":"CHECKPOINT","tasks":{},"external_path":"file:/opt/hikvision/idatafusion/flink-1.14.0/local-checkpoints/3560f8db528b3fb640e2b5a7db89af2d/chk-25613","discarded":true},{"@class":"completed","id":25612,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1648187836643,"latest_ack_timestamp":1648187836648,"state_size":6027,"end_to_end_duration":5,"alignment_buffered":0,"processed_data":0,"persisted_data":0,"num_subtasks":3,"num_acknowledged_subtasks":3,"checkpoint_type":"CHECKPOINT","tasks":{},"external_path":"file:/opt/hikvision/idatafusion/flink-1.14.0/local-checkpoints/3560f8db528b3fb640e2b5a7db89af2d/chk-25612","discarded":true},{"@class":"completed","id":25611,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1648187776643,"latest_ack_timestamp":1648187776648,"state_size":6027,"end_to_end_duration":5,"alignment_buffered":0,"processed_data":0,"persisted_data":0,"num_subtasks":3,"num_acknowledged_subtasks":3,"checkpoint_type":"CHECKPOINT","tasks":{},"external_path":"file:/opt/hikvision/idatafusion/flink-1.14.0/local-checkpoints/3560f8db528b3fb640e2b5a7db89af2d/chk-25611","discarded":true},{"@class":"completed","id":25610,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1648187716643,"latest_ack_timestamp":1648187716649,"state_size":6027,"end_to_end_duration":6,"alignment_buffered":0,"processed_data":0,"persisted_data":0,"num_subtasks":3,"num_acknowledged_subtasks":3,"checkpoint_type":"CHECKPOINT","tasks":{},"external_path":"file:/opt/hikvision/idatafusion/flink-1.14.0/local-checkpoints/3560f8db528b3fb640e2b5a7db89af2d/chk-25610","discarded":true},{"@class":"completed","id":25609,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1648187656643,"latest_ack_timestamp":1648187656649,"state_size":6027,"end_to_end_duration":6,"alignment_buffered":0,"processed_data":0,"persisted_data":0,"num_subtasks":3,"num_acknowledged_subtasks":3,"checkpoint_type":"CHECKPOINT","tasks":{},"external_path":"file:/opt/hikvision/idatafusion/flink-1.14.0/local-checkpoints/3560f8db528b3fb640e2b5a7db89af2d/chk-25609","discarded":true},{"@class":"completed","id":25608,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1648187596643,"latest_ack_timestamp":1648187596648,"state_size":6027,"end_to_end_duration":5,"alignment_buffered":0,"processed_data":0,"persisted_data":0,"num_subtasks":3,"num_acknowledged_subtasks":3,"checkpoint_type":"CHECKPOINT","tasks":{},"external_path":"file:/opt/hikvision/idatafusion/flink-1.14.0/local-checkpoints/3560f8db528b3fb640e2b5a7db89af2d/chk-25608","discarded":true},{"@class":"completed","id":25607,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1648187536643,"latest_ack_timestamp":1648187536648,"state_size":6027,"end_to_end_duration":5,"alignment_buffered":0,"processed_data":0,"persisted_data":0,"num_subtasks":3,"num_acknowledged_subtasks":3,"checkpoint_type":"CHECKPOINT","tasks":{},"external_path":"file:/opt/hikvision/idatafusion/flink-1.14.0/local-checkpoints/3560f8db528b3fb640e2b5a7db89af2d/chk-25607","discarded":true}]
    }

    7、查询某个job的checkpoints的配置信息

    GET         /jobs/<jobId>/checkpoints/config

    返回示例:(json)

    {
      "mode":"exactly_once",
      "interval":60000,
      "timeout":600000,
      "min_pause":0,
      "max_concurrent":1,
      "externalization":{
      "enabled":true,
      "delete_on_cancellation":false
      },
      "state_backend":"HashMapStateBackend",
      "checkpoint_storage":"FileSystemCheckpointStorage",
      "unaligned_checkpoints":false,
      "tolerable_failed_checkpoints":0,
      "aligned_checkpoint_timeout":0
    }

    查所有job

    8、查询所有job的id和状态

    GET /jobs

    返回示例:

    {
       "jobs":[  
          {"id":"0dca134dbbe841d617f3593dfe5f8c2e","status":"RUNNING"},    
          {"id":"f21e864681dcfb375bd2fbc556a82f51","status":"RUNNING"},    
          {"id":"14e8d5660be66388ed5de63bed2a9ab2","status":"RUNNING"}
       ]
    }

    9、查询所有job的概览信息

    在 /jobs的基础上额外输出了别的信息

    GET /jobs/overview

    返回示例:

    {
    "jobs":[
    {"jid":"0dca134dbbe841d617f3593dfe5f8c2e","name":"insert-into_default_catalog.default_database.sink220325101420191tL84","state":"RUNNING","start-time":1648179253170,"end-time":-1,"duration":275491671,"last-modification":1648179253452,"tasks":{"total":3,"created":0,"scheduled":0,"deploying":0,"running":3,"finished":0,"canceling":0,"canceled":0,"failed":0,"reconciling":0,"initializing":0}},
    {"jid":"f21e864681dcfb375bd2fbc556a82f51","name":"insert-into_default_catalog.default_database.sink220324174733642qwvs","state":"RUNNING","start-time":1648115953079,"end-time":-1,"duration":338791762,"last-modification":1648115953234,"tasks":{"total":3,"created":0,"scheduled":0,"deploying":0,"running":3,"finished":0,"canceling":0,"canceled":0,"failed":0,"reconciling":0,"initializing":0}},
    {"jid":"14e8d5660be66388ed5de63bed2a9ab2","name":"insert-into_default_catalog.default_database.sink220316115755871zzvU","state":"RUNNING","start-time":1648115678791,"end-time":-1,"duration":339066050,"last-modification":1648115679087,"tasks":{"total":3,"created":0,"scheduled":0,"deploying":0,"running":3,"finished":0,"canceling":0,"canceled":0,"failed":0,"reconciling":0,"initializing":0}}
    ]
    }

    有用的信息:job的id,name,state

     "jid":"0dca134dbbe841d617f3593dfe5f8c2e",
     "name":"insert-into_default_catalog.default_database.sink220325101420191tL84",
     "state":"RUNNING"
  • 相关阅读:
    用循环链表求解约瑟夫问题
    Nim游戏变种——取纽扣游戏
    POJ-2726-Holiday Hotel
    常用排序算法总结(二)
    常用排序算法总结(一)
    找出数组中出现次数最多的那个数——主元素问题
    C99新特性:变长数组(VLA)
    linux tftp配置 (Ubuntu18.04)
    Ubuntu 18.04安装Samba服务器及配置
    记录学习Linux遇到的问题
  • 原文地址:https://www.cnblogs.com/yb38156/p/16054372.html
Copyright © 2020-2023  润新知