• Python学习笔记——基础篇【第五周】——算法(4*4的2维数组和冒泡排序)、时间复杂度


    目录

    1、算法基础

    2、冒泡排序

    3、时间复杂度

        (1)时间频度

        (2)时间复杂度

    4、指数时间

    5、常数时间

    6、对数时间

    7、线性时间

     

    1、算法基础 

    要求:生成一个4*4的2维数组并将其顺时针旋转90度
    #!_*_coding:utf-8_*_
    
    
    array=[[col for col in range(5)] for row in range(5)] #初始化一个4*4数组
    #array=[[col for col in 'abcde'] for row in range(5)]
    
    for row in array: #旋转前先看看数组长啥样
        print(row)
    
    print('-------------') 
    for i,row in enumerate(array):
    
        for index in range(i,len(row)):
            tmp = array[index][i] #get each rows' data by column's index
            array[index][i] = array[i][index] #
            print tmp,array[i][index]  #= tmp
            array[i][index] = tmp
        for r in array:print r
    
        print('--one big loop --')
    

    2、冒泡排序

    将一个不规则的数组按从小到大的顺序进行排序

    data = [10,4,33,21,54,3,8,11,5,22,2,1,17,13,6]
    
    print("before sort:",data)
    
    previous = data[0]
    for j in range(len(data)):
        tmp = 0
        for i in range(len(data)-1):
            if data[i] > data[i+1]:
                tmp=data[i]
                data[i] = data[i+1]
                data[i+1] = tmp
        print(data)
    
    print("after sort:",data)
    

     代码优化(提升性能)

     1 count=0
     2 data = [10,4,33,21,1,54,3,8,11,5,22,2,1,17,13,6]
     3 #for index,i in enumerate(data[0:-1]):
     4 print(len(data))
     5 for j in range(1,len(data)):
     6     for i in range(len(data)-j):  #J= 0 1 2 3 4 5 6 提升地方
     7         if data[i]>data[i+1]:
     8             tmp=data[i+1]
     9             data[i+1]=data[i]  #把10赋值给4
    10             data[i]=tmp        #把4赋值给10
    11         count+=1
    12     print(data)
    13 print("count",count)
    冒泡排序
    3、时间复杂度 
    (1)时间频度
     一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测 试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法 中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
    (2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断 变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
     
    4、指数时间
    指的是一个问题求解所需要的计算时间m(n),依输入数据的大小n而呈指数成长(即输入数据的数量依线性成长,所花的时间将会以指数成长)
      for (i=1; i<=n; i++)
             x++;
      for (i=1; i<=n; i++)
           for (j=1; j<=n; j++)
                x++;
    

    第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

    5、常数时间

    若对于一个算法,T(n)的上界与输入大小无关,则称其具有常数时间,记作O(1)时间。一个例子是访问数组中的单个元素,因为访问它只需要一条指令。但是,找到无序数组中的最小元素则不是,因为这需要遍历所有元素来找出最小值。这是一项线性时间的操作,或称O(n)时间。但如果预先知道元素的数量并假设数量保持不变,则该操作也可被称为具有常数时间。

    6、对数时间 

    若算法的T(n) = O(log n),则称其具有对数时间

    常见的具有对数时间的算法有二叉树的相关操作和二分搜索

    对数时间的算法是非常有效的,因为每增加一个输入,其所需要的额外计算时间会变小。

    递归地将字符串砍半并且输出是这个类别函数的一个简单例子。它需要O(log n)的时间因为每次输出之前我们都将字符串砍半。 这意味着,如果我们想增加输出的次数,我们需要将字符串长度加倍。

     

    7、线性时间 

    如果一个算法的时间复杂度为O(n),则称这个算法具有线性时间,或O(n)时间。非正式地说,这意味着对于足够大的输入,运行时间增加的大小与输入成线性关系。例如,一个计算列表所有元素的和的程序,需要的时间与列表的长度成正比。

    详细见Alex金角大王的文档

    http://www.cnblogs.com/alex3714/articles/5143440.html

  • 相关阅读:
    Dig out deleted chat messages of App Skype
    Search history in "Maps"
    如何对具有端点加密功能的LINE进行取证
    HttpHandler实现网页图片防盗链
    自定义文本验证控件
    MySQL查询本周、上周、本月、上个月份数据的sql代码
    org.hibernate.NonUniqueObjectException
    Struts2 中的值栈的理解
    struts2中struts.xml配置文件详解
    基于Struts自定义MVC-2
  • 原文地址:https://www.cnblogs.com/yard/p/5492295.html
Copyright © 2020-2023  润新知