问题描述:
Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted linked list: [-10,-3,0,5,9], One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST: 0 / -3 9 / / -10 5
解题思路:
将一个排好序的链表变成一个平衡的二叉搜索树,我们可以采用分治法来做这道题目
使用快慢指针找到这个链表的中点,将链表分为3部分:左链表,中点,右链表。
记得做链表的最后一个节点要与中点断开。
中点建立为新的根节点,然后对左子链表和右子链表进行构造树。
代码:
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */ /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* sortedListToBST(ListNode* head) { if(!head) return NULL; if(!head->next) return new TreeNode(head->val); //splict into 2 list ListNode *fast = head, *slow = head, *pre = NULL; while(fast && fast->next){ fast = fast->next->next; pre = slow; slow = slow->next; } if(pre) pre->next = NULL; TreeNode* root = new TreeNode(slow->val); if(head != slow)root->left = sortedListToBST(head); root->right = sortedListToBST(slow->next); return root; } };