• [Algorithm][Greedy] Prim’s Minimum Spanning Tree (MST)


    概述

    Prim算法也是一种贪婪算法,它从一个空的生成树开始,主要思想为维护两个集合:

      1.S:一个集合包含已经存在于MST(Minimum Spanning Tree)中的节点

      2.S:一个集合包含没有在MST中的节点

    在每一步,它考虑任意一个能够链接两个集合的边,并且从中选择权重最小的边,然后将边的另一个端点加入到S1中。

    在图论中,连接两个集合的边被称为割 (cut)

    生成树(spanning tree):所有的节点都被连接

    算法

    1. 创建一个MstSet来维护已经在最小生成树里的点。

    2. 给图中所有的点一个初始值,第一个点初始值为0,剩余的点初始值为无穷大,以便于我们从中选择第一个点。

    3. (while)只要mstSet还没包含所有的点

      a. 从不在mst的点中选择一个有最小值的点u

      b. 把u放到mstSet里

      c. 更新u的邻接点的值:遍历所有的值,对每一个邻接顶点,如果边u-v的权重比v之前的值要小,更新v的值为u-v的权重

    例子

    以上图为输入图

    mstSet初始为空:{ } 所有顶点的值为{0, INF, INF, INF, INF, INF, INF, INF, INF}

    首先我们选择0点作为根节点, 将0放入mstSet并且更新邻接点的值

    此时mstSet: { 0 } key: {4, 8, INF, INF, INF, INF, INF, INF}

    此时4为最小值,取出1放入mstSet并且更新key

    mstSet: {0, 1} key: {8, 8, INF, INF, INF, INF, INF}

    此时取出7:

    mstSet: {0, 1, 7} key: {1, 7, 8, INF, INF, INF}

    取出6:

    mstSet: {0, 1, 7, 6} key: {2, 6, 8, INF, INF}

    最后得到的树为:

    实现

    // A C / C++ program for Prim's Minimum Spanning Tree (MST) algorithm. 
    // The program is for adjacency matrix representation of the graph
     
    #include <stdio.h>
    #include <limits.h>
     
    // Number of vertices in the graph
    #define V 5
     
    // A utility function to find the vertex with minimum key value, from
    // the set of vertices not yet included in MST
    int minKey(int key[], bool mstSet[])
    {
       // Initialize min value
       int min = INT_MAX, min_index;
     
       for (int v = 0; v < V; v++)
         if (mstSet[v] == false && key[v] < min)
             min = key[v], min_index = v;
     
       return min_index;
    }
     
    // A utility function to print the constructed MST stored in parent[]
    int printMST(int parent[], int n, int graph[V][V])
    {
       printf("Edge   Weight
    ");
       for (int i = 1; i < V; i++)
          printf("%d - %d    %d 
    ", parent[i], i, graph[i][parent[i]]);
    }
     
    // Function to construct and print MST for a graph represented using adjacency
    // matrix representation
    void primMST(int graph[V][V])
    {
         int parent[V]; // Array to store constructed MST
         int key[V];   // Key values used to pick minimum weight edge in cut
         bool mstSet[V];  // To represent set of vertices not yet included in MST
     
         // Initialize all keys as INFINITE
         for (int i = 0; i < V; i++)
            key[i] = INT_MAX, mstSet[i] = false;
     
         // Always include first 1st vertex in MST.
         key[0] = 0;     // Make key 0 so that this vertex is picked as first vertex
         parent[0] = -1; // First node is always root of MST 
     
         // The MST will have V vertices
         for (int count = 0; count < V-1; count++)
         {
            // Pick the minimum key vertex from the set of vertices
            // not yet included in MST
            int u = minKey(key, mstSet);
     
            // Add the picked vertex to the MST Set
            mstSet[u] = true;
     
            // Update key value and parent index of the adjacent vertices of
            // the picked vertex. Consider only those vertices which are not yet
            // included in MST
            for (int v = 0; v < V; v++)
     
               // graph[u][v] is non zero only for adjacent vertices of m
               // mstSet[v] is false for vertices not yet included in MST
               // Update the key only if graph[u][v] is smaller than key[v]
              if (graph[u][v] && mstSet[v] == false && graph[u][v] <  key[v])
                 parent[v]  = u, key[v] = graph[u][v];
         }
     
         // print the constructed MST
         printMST(parent, V, graph);
    }
     
     
    // driver program to test above function
    int main()
    {
       /* Let us create the following graph
              2    3
          (0)--(1)--(2)
           |   /    |
          6| 8/   5 |7
           | /      |
          (3)-------(4)
                9          */
       int graph[V][V] = {{0, 2, 0, 6, 0},
                          {2, 0, 3, 8, 5},
                          {0, 3, 0, 0, 7},
                          {6, 8, 0, 0, 9},
                          {0, 5, 7, 9, 0},
                         };
     
        // Print the solution
        primMST(graph);
     
        return 0;
    }

    与Dijsktra的不同

    dijsktra中使用从起点到该点的最小距离更新并以此做比较

    Prim中使用这条边的权重来更新点的值,并以此做比较

    参考链接:https://ide.geeksforgeeks.org/index.php

  • 相关阅读:
    "密码最短长度为7,其中必须包含以下非字母数字字符1"解决方法 (转)
    关于数据绑定的一个小小的总结:绑定数据到List类型的控件(RadioButtonList,ListBox等),双重绑定。
    转:从玩具到游戏 看另类项目激励机制
    [系列文章]上传文件管理控件之v1
    [系列文章]上传文件管理控件v3
    解决“此版本的 SQL Server 不支持用户实例登录标志。该连接将关闭”问题,完整综合版。
    Crystal Reports基本语法
    Crystal Reports图表(上)
    Crystal Reports第一张报表
    Crystal Reports中的字段
  • 原文地址:https://www.cnblogs.com/yaoyudadudu/p/9185836.html
Copyright © 2020-2023  润新知