• 72. Edit Distance


    问题描述:

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

    You have the following 3 operations permitted on a word:

    1. Insert a character
    2. Delete a character
    3. Replace a character

    Example 1:

    Input: word1 = "horse", word2 = "ros"
    Output: 3
    Explanation: 
    horse -> rorse (replace 'h' with 'r')
    rorse -> rose (remove 'r')
    rose -> ros (remove 'e')
    

    Example 2:

    Input: word1 = "intention", word2 = "execution"
    Output: 5
    Explanation: 
    intention -> inention (remove 't')
    inention -> enention (replace 'i' with 'e')
    enention -> exention (replace 'n' with 'x')
    exention -> exection (replace 'n' with 'c')
    exection -> execution (insert 'u')

    解题思路:

    这道题可以用动态规划来做:

    dp[i][j]表示的是word1的前i个字符变成word2的前j个字符的最少操作

    当word1为空的时候,变成word2所需要的操作为word2.size()所以i = 0时dp[i][j] = j

    同理: j = 0时 dp[i][j] = i

    状态转移方程:

    word1[i] = word2[j] : dp[i][j] = dp[i-1][j-1]

    else: dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1])) + 1 

    代码:

    class Solution {
    public:
        int minDistance(string word1, string word2) {
            if(word1.empty())
                return word2.size();
            if(word2.empty())
                return word1.size();
            int m = word1.size()+1;
            int n = word2.size()+1;
            vector<vector<int>> dp(m, vector<int>(n, 0));
            for(int i = 0; i < m; i++){
                dp[i][0] = i; 
            }
            for(int j = 0; j < n; j++){
                dp[0][j] = j;
            }
            for(int i = 1; i < m; i++){
                for(int j = 1; j < n; j++){
                    if(word1[i-1] == word2[j-1])
                        dp[i][j] = dp[i-1][j-1];
                    else
                        dp[i][j] = min(dp[i-1][j-1],min(dp[i-1][j],dp[i][j-1])) + 1;
                }
            }
            return dp[m-1][n-1];
        }
    };
  • 相关阅读:
    php之aop实践
    PHP一个类AOP的实现
    PHP系列学习之AOP
    PVE上安装黑裙辉6.2
    安装proxmox VE(PVE)教程
    x-forwarded-for的深度挖掘
    nginx的配置总结,有时间自己整理
    openresty入门文章(笔者自用)
    pve apt-get update error 升级报错-文章未完工和验证
    pve proxmox 常见问题,perl warning
  • 原文地址:https://www.cnblogs.com/yaoyudadudu/p/9128182.html
Copyright © 2020-2023  润新知