• 生成器


    生成器

    生成器

      生成器的本质就是迭代器

      Python的生成器提供了一种方便的方法来实现迭代器协议。如果容器对象的__iter__()方法被实现为生成器,它将自动返回提供__iter__()__next__()方法的迭代器对象(技术上是一个生成器对象)。有关生成器的更多信息,请参见yield表达式的文档。

    # 通过函数变成一个生成器
    
    def func():
        
        print(1)
        yield 5     # 函数碰到return会结束,生成器碰到yield不结束会挂起
    
    print(func().__next__)

    生成器使用总结:

    1.生成器的好处是可以一边循环一边进行计算,不用一下子就生成一个很大的集合,占用内存空间。生成器的使用节省内存空间。

    2.生成器保存的是算法,而列表保存的计算后的内容,所以同样内容的话生成器占用内存小,而列表占用内存大。每次调用 next(G) ,就计算出 G 的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出 StopIteration 的异常。

    3.使用for 循环来遍历生成器内容,因为生成器也是可迭代对象。通过 for 循环来迭代它,不需要关心 StopIteration 异常。但是用for循环调用generator时,得不到generator的return语句的返回值。如果想要拿到返回值,必须用next()方法,且捕获StopIteration错误,返回值包含在StopIteration的value中。

    4.在 Python 中,使用了 yield 的函数都可被称为生成器(generator)。生成器是一个返回迭代器的函数,只能用于迭代操作。更简单点理解生成器就是一个迭代器。

    5.一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,保存当前所有的运行信息,并返回一个迭代值,下次执行next() 方法时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。生成器不仅“记住”了它数据状态;生成器还“记住”了它在流控制构造中的位置。

    send

    send其实就是先对生成器传值,然后执行next方法

    def func():
        print(1)
        a = yield 2
        print(a)
        yield 4
    
    g = func()
    print(g.__next__())
    print(g.send("123"))

    注意:如果第一次调用生成器的时候使用了send,send里的值必须是None。

    推导式

    列表推导式:[i for i in range(5)]

    集合推导式:{i for i in range(5)}

    字典推导式:{i: i + 1 for i in range(5)}

    生成器推导式:(i for i in range(5))

  • 相关阅读:
    写了一个数据库的连继ID号(格式:xxxx000001)
    热心的网友<寒羽枫>帮忙解决水晶报表打印纸张问题
    解决vs2005自带水晶报表次数的限制的次数
    WebWork教程 Interceptor(拦截器)
    由于最近网站内容需要更新的还是满多的,于是想开发一个采集系统。收集了一下资料。
    ASP.NET AJAX 1.0 Beta 2 发布
    水晶报表的显示与打印不一至问题
    去年治疗过敏性鼻炎所用的药。
    正则表达式快速入门教程
    sql复制一条相同的记录最快最好的办法。
  • 原文地址:https://www.cnblogs.com/yaoyanxin007/p/10559616.html
Copyright © 2020-2023  润新知