• 二叉搜索树的操作集


    插入(二叉搜索树性质是左子树全小,右子树全大):

    BinTree Insert(BinTree BST, ElementType X) {
        BinTree p = BST;
        if (!p) {
            BST = (BinTree)malloc(sizeof(struct TNode));
            BST->Data = X;
            BST->Left = BST->Right = NULL;
            return BST;
        }
        BinTree temp;
        int k;
        while (p) {
            temp = p;
            if (X > p->Data) {
                p = p->Right;
                k = 0;
            }
            else {
                p = p->Left;
                k = 1;
            }
        }
        p = (BinTree)malloc(sizeof(struct TNode));
        p->Data = X;
        p->Left = p->Right = NULL;
        if (k)
            temp->Left = p;
        else
            temp->Right = p;
        return BST;
    }

    注意这里要记录结点存放的位置(是父结点的左孩子还是右孩子)。

    查找

    Position Find(BinTree BST, ElementType X) {
        BinTree p = BST;
        while (p) {
            if (p->Data == X) {
                return p;
            }
            else if (X > p->Data) {
                p = p->Right;
            }
            else {
                p = p->Left;
            }
        }
        return NULL;
    }

    查找最小/大的结点(一定在二叉搜索树的最左/右叶子结点):

    Position FindMin(BinTree BST) {
        BinTree p = BST;
        if (!p)
            return p;
        BinTree temp;
        while (p) {
            temp = p;
            p = p->Left;
        }
        return temp;
    }
    Position FindMax(BinTree BST) {
        BinTree p = BST;
        if (!p)
            return p;
        BinTree temp;
        while (p) {
            temp = p;
            p = p->Right;
        }
        return temp;
    }

    删除

    BinTree Delete(BinTree BST, ElementType X) {
        if (!BST) {
            printf("Not Found
    ");
            return BST;
        }
        BinTree insert;
        BinTree temp;
        if (X == BST->Data) {
            if (BST->Left && BST->Right) {
                temp = BST->Left;
                BST = BST->Right;
                insert = FindMin(BST);
                if(insert)
                    insert->Left = temp;
                return BST;
            }
            if (BST->Left)
                return BST->Left;
            else
                return BST->Right;
        }
        BinTree p = BST;
        temp = p;
        int k;
        if (X > p->Data) {
            p = p->Right;
            k = 0;
        }
        else {
            p = p->Left;
            k = 1;
        }
        while (p) {
            if (p->Data == X) {
                if (k) {
                    if (p->Left && p->Right) {
                        temp->Left = p->Left;
                        insert = FindMax(p->Left);
                        insert->Right = p->Right;
                    }
                    else if (p->Left)
                        temp->Left = p->Left;
                    else if (p->Right)
                        temp->Left = p->Right;
                    else
                        temp->Left = NULL;
                }
                else {
                    if (p->Left && p->Right) {
                        temp->Right = p->Right;
                        insert = FindMin(p->Right);
                        insert->Left = p->Left;
                    }
                    else if (p->Left)
                        temp->Right = p->Left;
                    else if (p->Right)
                        temp->Right = p->Right;
                    else
                        temp->Right = NULL;
                }
                return BST;
            }
            else if (X > p->Data) {
                p = p->Right;
                if (k)
                    temp = temp->Left;
                else
                    temp = temp->Right;
                k = 0;
            }
            else {
                p = p->Left;
                if (k)
                    temp = temp->Left;
                else
                    temp = temp->Right;
                k = 1;
            }
        }
        printf("Not Found
    ");
        return BST;
    }
  • 相关阅读:
    Java的Set集合中的retainAll()方法
    蒲丰投针问题
    根据贝叶斯公式求解三门问题
    概率论公式(续)
    数字(number)
    寻找最美的你(select)
    木棍
    lowbit
    搜索题
    day7
  • 原文地址:https://www.cnblogs.com/yaotong0830/p/14287973.html
Copyright © 2020-2023  润新知