def mean_squared_error(y_true, y_pred):
if not K.is_tensor(y_pred):
y_pred = K.constant(y_pred)
y_true = K.cast(y_true, y_pred.dtype)
return K.mean(K.square(y_pred - y_true), axis=-1)
def mean_absolute_error(y_true, y_pred):
if not K.is_tensor(y_pred):
y_pred = K.constant(y_pred)
y_true = K.cast(y_true, y_pred.dtype)
return K.mean(K.abs(y_pred - y_true), axis=-1)
def mean_absolute_percentage_error(y_true, y_pred):
if not K.is_tensor(y_pred):
y_pred = K.constant(y_pred)
y_true = K.cast(y_true, y_pred.dtype)
diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true),
K.epsilon(),
None))
return 100. * K.mean(diff, axis=-1)
def mean_squared_logarithmic_error(y_true, y_pred):
if not K.is_tensor(y_pred):
y_pred = K.constant(y_pred)
y_true = K.cast(y_true, y_pred.dtype)
first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.)
second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.)
return K.mean(K.square(first_log - second_log), axis=-1)