• ch6-酸奶饮料新产品口味测试案例-方差分析


     比较均值:列表和图形

    拆分文件

    单因素方差分析

    双因素方差分析(含交互项、只含主效应)

    组间两两比较

    随机因素分析

    方差分析原理:

    变异分解。将样本的总变异分解为随机误差的作用、某影响因素的作用。通过比较某影响因素所致变异与随机误差所致变异的大小建立F检验统计量进行检验。

    yij=总平均+ai+随机误差项

    检验ai是否为0。

    1、案例背景

    分析10种不同口味(8个竞争品牌、2各试制品)酸奶有无差异,以及城市因素是否对其有影响。

    2、数据理解

    用交叉表(数据-描述统计-交叉表)看原始数据结构。

    均值的列表描述:

    均值的图形描述:

    此例画的是误差条形图。

    3、不同品牌的评分差异分析

     先剔除城市因素的影响,所以要先进行拆分文件。

    方差分析模型的假设条件:独立性、正态性、方差齐性。

    方差分析的模型检验包括总模型检验(原假设:模型中涉及的所有因素的实际影响均为0)、各因素检验(原假设:每个因素的实际影响为0)

    品牌作用的总体检验:

    单因素方差分析有两种:一是“分析-比较均值-单因素ANOVA”,一是“如下”。

     结论:在同一城市,酸奶不同品牌间存在差异。

    问题:那哪些品牌间存在差异呢?需要进行两两比较。

    组间两两比较:

    结论:不同亚组间的P值小于0.05,即亚组间有差异;同一亚组内P值大于0.05,两两无差异。

    方差齐性检验:

    实际上,方差分析模型对假设条件有一定的忍耐性。对于独立性,一般从研究设计或数据背景就可以大致评估;对于正态性,只要不是严重的偏态,在样本量较大的时候结果很稳定;对于方差齐性,只要所有组中的最大方差、最小方差之比小于3,则检验结果也很稳定。

    4、两因素方差分析模型

     拟合包含交互项的饱和模型:

    拟合只包含主效应的模型:(交互项不显著,所以去掉交互项)

    组间两两比较(品牌间、城市间的口感评分有差异,要分析哪个城市、哪个品牌有差异)

    随机因素分析:

    固定因素:该因素在样本中所有可能的水平都出现了。

    随机因素:该因素所有可能的取值在样本中并没有全部出现,或不可能全部出现。此时将该因素已出现的水平泛化到适合所有可能出现的水平。

    判断一个因素是固定还是随机,是根据研究目的而定。

    研究10种不同口味酸奶在4个城市间是否存在差异。固定因素:酸奶品种、城市。

    研究10中不同口味酸奶在全国城市间是否存在差异。固定因素:酸奶品种。随机因素:4个城市。(由4个城市外推至全国)

  • 相关阅读:
    bzoj3751 / P2312 解方程
    P1270 “访问”美术馆(树形dp)
    [bzoj1085][SCOI2005]骑士精神
    [bzoj1208][HNOI2004]宠物收养所
    [bzoj1196][HNOI2006]公路修建问题
    [bzoj1093][ZJOI2007]最大半连通子图
    [bzoj1103][POI2007]大都市meg
    [Apio2009][bzoj1179]Atm
    [bzoj1191][HNOI2006]超级英雄Hero
    [bzoj2458][BeiJing2011]最小三角形
  • 原文地址:https://www.cnblogs.com/yaofang/p/5641327.html
Copyright © 2020-2023  润新知