• POJ 1679 The Unique MST


    The Unique MST
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 37818   Accepted: 13835

    Description

    Given a connected undirected graph, tell if its minimum spanning tree is unique.

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
    1. V' = V.
    2. T is connected and acyclic.

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!
    

    Source

      1 #include <algorithm>
      2 #include <iostream>
      3 #include <cstring>
      4 #include <cstdio>
      5 #include <cctype>
      6 
      7 #define int long long
      8 
      9 using namespace std;
     10 
     11 const int N = 405;
     12 
     13 int cge, T, n, m, x, y, z, ec, sum, gc, ans, 
     14 fa[N], f[N], use[N << 9], faz[25][N], mx1[25][N], dep[N];
     15 
     16 struct Edge
     17 {
     18     int u, v, nxt, w;
     19     bool operator < (const Edge &b) const 
     20         { return w < b.w; }
     21 }e[N << 9], g[N << 9];
     22 
     23 inline void read(int &x)
     24 {
     25     int k = 1; x = 0;
     26     char c = getchar();
     27     while (!isdigit(c))
     28         if (c == '-') k = -1, c = getchar();
     29         else c = getchar();
     30     while (isdigit(c))
     31         x = (x << 1) + (x << 3) + (c ^ 48),
     32         c = getchar();
     33     x *= k;
     34 }
     35 
     36 inline void Add(int a, int b, int c)
     37 {
     38     ++gc;
     39     g[gc].u = a;
     40     g[gc].v = b;
     41     g[gc].w = c;
     42 }
     43 
     44 inline void Addedge(int a, int b, int c)
     45 {
     46     ++ec;
     47     e[ec].u = a;
     48     e[ec].v = b;
     49     e[ec].w = c;
     50     e[ec].nxt = f[a];
     51     f[a] = ec;
     52 }
     53 
     54 inline void Init()
     55 {
     56     cge = 9223372036854775807, ec = gc = 0, sum = 0, ans = 0;
     57     read(n), read(m);
     58     memset(f, -1, sizeof(f));
     59     memset(use, 0, sizeof(use));
     60     memset(dep, 0, sizeof(dep));
     61     memset(faz, 0, sizeof(faz));
     62     memset(mx1, 0, sizeof(mx1));
     63     for (int i = 1; i <= n; ++i) fa[i] = i;
     64     for (int i = 1; i <= m; ++i)
     65         read(x), read(y), read(z),
     66         Add(x, y, z);
     67 }
     68 
     69 int Find(int x)
     70 {
     71     return fa[x] == x ? x : fa[x] = Find(fa[x]);
     72 }
     73 
     74 inline bool One(int a, int b)
     75 {
     76     a = Find(a);
     77     b = Find(b);
     78     return a == b;
     79 }
     80 
     81 inline void Union(int a, int b, int u)
     82 {
     83     int ra = Find(a);
     84     int rb = Find(b);
     85     ans += g[u].w; ++sum;
     86     fa[ra] = rb; use[u] = 1;
     87     Addedge(a, b, g[u].w);
     88     Addedge(b, a, g[u].w);
     89     return;
     90 }
     91 
     92 inline void Kruskal()
     93 {
     94     sort(g + 1, g + 1 + gc);
     95     for (int i = 1; i <= gc; ++i)
     96     {
     97         if (!One(g[i].v, g[i].u))
     98             Union(g[i].u, g[i].v, i);
     99         if (sum == n - 1) break;
    100     }
    101     dep[1] = 1;
    102 }
    103 
    104 void DFS(int u)
    105 {
    106     for (int i = f[u]; i != -1; i = e[i].nxt)
    107     {
    108         if (e[i].v == faz[0][u]) continue;
    109         faz[0][e[i].v] = u,
    110         mx1[0][e[i].v] = e[i].w,
    111         dep[e[i].v] = dep[u] + 1,
    112         DFS(e[i].v);
    113     }
    114 }
    115 
    116 inline void Make()
    117 {
    118     for (int j = 1; j <= 20; ++j)
    119         for (int i = 1; i <= n; ++i)
    120             faz[j][i] = faz[j - 1][faz[j - 1][i]],
    121             mx1[j][i] = max(mx1[j - 1][i], mx1[j - 1][faz[j - 1][i]]);
    122 }
    123 
    124 inline void LCA(int a, int b, int c)
    125 {
    126     int m1 = 0, m2 = 0;
    127     if (dep[a] < dep[b]) swap(a, b);
    128     for (int i = 20; i >= 0; --i)
    129         if (dep[faz[i][a]] >= dep[b])
    130             m1 = max(m1, mx1[i][a]);
    131     if (a == b) { cge = min(cge, c - m1); return; }
    132     for (int i = 20; i >= 0; --i)
    133         if (faz[i][b] != faz[i][a])
    134             m1 = max(m1, max(mx1[i][a], mx1[i][b]));
    135     m1 = max(m1, max(mx1[0][a], mx1[0][b]));
    136     cge = min(cge, c - m1);
    137 }
    138 
    139 inline void SecMST()
    140 {
    141     for (int i = 1; i <= m; ++i)
    142         if (!use[i]) 
    143             LCA(g[i].u, g[i].v, g[i].w);
    144     if (cge) printf("%lld
    ", ans);
    145     else puts("Not Unique!");
    146 }
    147 
    148 signed main()
    149 {
    150     read(T);
    151     while (T--) Init(), Kruskal(), DFS(1), Make(), SecMST();
    152     return 0;
    153 }
  • 相关阅读:
    Flask【第11篇】:整合Flask中的目录结构
    GIMP简介
    java 二进制数字符串转换工具类
    Linux nohup 命令
    Linux & 命令
    linux 下检查java jar包 程序是否正常 shell
    linux 下启动java jar包 shell
    linux 下停止java jar包 shell
    shell 中的特殊变量
    maven settings 配置文件
  • 原文地址:https://www.cnblogs.com/yanyiming10243247/p/10127609.html
Copyright © 2020-2023  润新知