• 信号处理


    EMD,经验模态分解,是一种信号分解的技术;

    它提出了一个概念叫 基本模态分量 IMF,

    EMD 用于处理非平稳信号,可用于任意数据,基于数据本身进行分解;

    EMD 把一个信号分解成 多个 IMF,每个 IMF 具有线性和非线性的特点,还有一个 信号残余分量,常常代表信号的直流分量或者信号的趋势;

    EMD 分解得到的 IMF,频率逐渐降低,尺度各不相同;

    EMD 分解得到的前几个模态分量,通常集中了原始信号中最显著、最重要的信息; 

    EMD 分解容易造成 模态混合,表现为下列现象之一:

    1. 在同一个 IMF 中,尺度分布范围很宽却又各不相同的信号;

    2. 在不同 IMF 中,存在尺度相近的信号;

    模态混合使得 IMF 失去单一特征尺度,形成尺度混杂的震荡,失去原有的物理意义

    EEMD,集合经验模态分解,解决了 EMD 模态混合的现象

    使用方法 

    安装:pip install EMD-signal

    文档:https://pyemd.readthedocs.io/en/latest/

    Python EMD 用法

    ##### 基本用法
    import numpy as np
    from PyEMD import EMD
    import pylab as plt
    
    s = np.random.random(100)
    emd = EMD()
    IMFs = emd.emd(s)
    
    
    ##### 示例
    # Define signal
    t = np.linspace(0, 1, 200)
    s = np.cos(11*2*np.pi*t*t) + 6*t*t
    
    # Execute EMD on signal
    IMF = EMD().emd(s,t)
    N = IMF.shape[0]+1
    
    # Plot results
    plt.subplot(N,1,1)
    plt.plot(t, s, 'r')
    plt.title("Input signal: $S(t)=cos(22pi t^2) + 6t^2$")
    plt.xlabel("Time [s]")
    
    for n, imf in enumerate(IMF):
        plt.subplot(N,1,n+2)
        plt.plot(t, imf, 'g')
        plt.title("IMF "+str(n+1))
        plt.xlabel("Time [s]")
    
    plt.tight_layout()
    plt.savefig('simple_example')
    plt.show()

    输出

    Python EEMD 用法

    def eemd(self, S, T=None, max_imf=-1)

    S:一维信号

    T:时间,相当于 x,如果没有 时间,就用 None

    max_imf:分解成多少个 基本模态分量,注意 还有一个 残余分量,也就是 max_imf = 2 的话,有生成 3 个 imf

    示例

    from PyEMD import EEMD
    import numpy as np
    import pylab as plt
    
    
    def main():
        # Define signal
        t = np.linspace(0, 1, 200)
    
        sin = lambda x,p: np.sin(2*np.pi*x*t+p)
        S = 3*sin(18,0.2)*(t-0.2)**2
        S += 5*sin(11,2.7)
        S += 3*sin(14,1.6)
        S += 1*np.sin(4*2*np.pi*(t-0.8)**2)
        S += t**2.1 -t
    
        # Assign EEMD to `eemd` variable
        eemd = EEMD()
    
        # Say we want detect extrema using parabolic method
        # emd = eemd.EMD
        # emd.extrema_detection="parabol"
        # eemd.trials = 50
        # eemd.noise_seed(12345)
    
        # Execute EEMD on S
        eIMFs = eemd.eemd(S, t, -1)
        nIMFs = eIMFs.shape[0]
    
        # Plot results
        plt.figure(figsize=(12,9))
        plt.subplot(nIMFs+1, 1, 1)
        plt.plot(t, S, 'r')
    
        for n in range(nIMFs):
            plt.subplot(nIMFs+1, 1, n+2)
            plt.plot(t, eIMFs[n], 'g')
            plt.ylabel("eIMF %i" %(n+1))
            plt.locator_params(axis='y', nbins=5)
    
        plt.xlabel("Time [s]")
        plt.tight_layout()
        plt.savefig('eemd_example', dpi=120)
        plt.show()
    
    
    if __name__ == '__main__':
        main() 

    注意

    1. 使用时 数据 是 浮点数;

    2. eemd 必须 使用  if __name__ == '__main__' 运行,不知道为什么

    总结

    在实际应用中,EMD 可能与其他方法进行融合,比如 先进行 去燥,再 EMD 分解,或者 先 小波分解降噪,再 EMD 分解

    参考资料:

    https://www.cnblogs.com/RoseVorchid/p/12030980.html  EEMD算法python实现,原理讲得不咋地

    http://www.360doc.com/content/19/0806/12/41357686_853284987.shtml#  EEMD 原理

    https://www.cnblogs.com/mikawong/p/7682467.html  记录了 PyEMD 的一些资源链接

    《Adaboost_SVM集成模型的滚动轴承早期故障诊断》  电子书

  • 相关阅读:
    java基础之 javac编译单个文件并执行 带jar包
    java 按照字符数分解字符串
    转载 模糊查询map中的key
    public final static PrintStream out = null; 的实例化猜想
    从0开始搭个网站在云上 思路引导
    java 泛型操作
    git 命令行
    React Native 安卓添加阴影
    react native 按钮的那些事
    mac 下 react Native android环境搭建
  • 原文地址:https://www.cnblogs.com/yanshw/p/12707121.html
Copyright © 2020-2023  润新知