• 【笔记】PyTorch框架学习 -- 2. 计算图、autograd以及逻辑回归的实现


    1. 计算图

    使用计算图的主要目的是使梯度求导更加方便。

    import torch
    
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)
    
    a = torch.add(w, x)     # retain_grad()
    b = torch.add(w, 1)
    y = torch.mul(a, b)
    
    y.backward()
    print(w.grad) # tensor([5.])
    
    # 查看叶子结点
    print("is_leaf:
    ", w.is_leaf, x.is_leaf, a.is_leaf, b.is_leaf, y.is_leaf)
    # is_leaf: True True False False False
    
    # 查看梯度
    print("gradient:
    ", w.grad, x.grad, a.grad, b.grad, y.grad)
    # gradient: tensor([5.]) tensor([2.]) None None None
    
    # 查看 grad_fn
    print("grad_fn:
    ", w.grad_fn, x.grad_fn, a.grad_fn, b.grad_fn, y.grad_fn)
    # grad_fn:
    # None 
    # None 
    # <AddBackward0 object at 0x00000258F55C28D0> 
    # <AddBackward0 object at 0x00000258F55C2A58> 
    # <MulBackward0 object at 0x00000258F55D5518>
    

    2. 静态图和动态图

    TensorFlow是静态图,PyTorch是动态图,区别在于在运算前是否先搭建图。

    3. autograd 自动求导

    import torch
    torch.manual_seed(10)
    
    # 非叶子节点默认不保存梯度,除非显式指定
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)
    
    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)
    
    # 如果不保存图,那么不能执行第二次
    y.backward(retain_graph=True)
    print(w.grad) # tensor([5.])
    y.backward()
    

    grad_tensors的使用:

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)
    
    a = torch.add(w, x)     # retain_grad()
    b = torch.add(w, 1)
    
    y0 = torch.mul(a, b)    # y0 = (x+w) * (w+1)
    y1 = torch.add(a, b)    # y1 = (x+w) + (w+1)    dy1/dw = 2
    
    loss = torch.cat([y0, y1], dim=0)       # [y0, y1]
    print(loss) # tensor([6., 5.], grad_fn=<CatBackward>)
    
    grad_tensors = torch.tensor([1., 2.])
    
    loss.backward(gradient=grad_tensors)    # gradient 传入 torch.autograd.backward()中的grad_tensors
    
    print(w.grad) # tensor([9.])
    

    x = torch.tensor([3.], requires_grad=True)
    y = torch.pow(x, 2)     # y = x**2
    
    # 只有创建了导数的计算图,才能进行二阶求导
    grad_1 = torch.autograd.grad(y, x, create_graph=True)   # grad_1 = dy/dx = 2x = 2 * 3 = 6
    print(grad_1) # (tensor([6.], grad_fn=<MulBackward0>),)
    
    grad_2 = torch.autograd.grad(grad_1[0], x)              # grad_2 = d(dy/dx)/dx = d(2x)/dx = 2,二阶导数
    print(grad_2) # (tensor([2.]),)
    

    # 1. 梯度不自动清零
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)
    
    for i in range(4):
        a = torch.add(w, x)
        b = torch.add(w, 1)
        y = torch.mul(a, b)
    
        y.backward()
        print(w.grad)  # 若未清零,tensor([5.]) tensor([10.]) tensor([15.]) tensor([20.])
    
        w.grad.zero_() # 若清零了,tensor([5.]) tensor([5.]) tensor([5.]) tensor([5.])
    
    # 2. 依赖叶子节点的节点,requires_grad默认为True
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)
    
    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)
    
    print(a.requires_grad, b.requires_grad, y.requires_grad) # True True True
    
    # 查看下地址
    a = torch.ones((1, ))
    print(id(a), a) # 2158573461368 tensor([1.])
    
    # a = a + torch.ones((1, ))
    # print(id(a), a) # 1939675405912 tensor([2.]) 地址换了
    
    a += torch.ones((1, ))
    print(id(a), a) # 2158573461368 tensor([2.])
    
    #===========================================
    
    # 3. 叶子节点不能in-place操作
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)
    
    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)
    
    w.add_(1) # in-place操作,会报错
    
    y.backward()
    

    4. 逻辑回归

    import torch
    import torch.nn as nn
    import matplotlib.pyplot as plt
    import numpy as np
    torch.manual_seed(10)
    
    
    # ============================ step 1/5 生成数据 ============================
    sample_nums = 100
    mean_value = 1.7
    bias = 1
    n_data = torch.ones(sample_nums, 2)
    x0 = torch.normal(mean_value * n_data, 1) + bias      # 类别0 数据 shape=(100, 2)
    y0 = torch.zeros(sample_nums)                         # 类别0 标签 shape=(100, 1)
    x1 = torch.normal(-mean_value * n_data, 1) + bias     # 类别1 数据 shape=(100, 2)
    y1 = torch.ones(sample_nums)                          # 类别1 标签 shape=(100, 1)
    train_x = torch.cat((x0, x1), 0)
    train_y = torch.cat((y0, y1), 0)
    
    
    # ============================ step 2/5 选择模型 ============================
    class LR(nn.Module):
        def __init__(self):
            super(LR, self).__init__()
            self.features = nn.Linear(2, 1)
            self.sigmoid = nn.Sigmoid()
    
        def forward(self, x):
            x = self.features(x)
            x = self.sigmoid(x)
            return x
    
    
    lr_net = LR()   # 实例化逻辑回归模型
    
    
    # ============================ step 3/5 选择损失函数 ============================
    loss_fn = nn.BCELoss()
    
    # ============================ step 4/5 选择优化器   ============================
    lr = 0.01  # 学习率
    optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)
    
    # ============================ step 5/5 模型训练 ============================
    for iteration in range(1000):
    
        # 前向传播
        y_pred = lr_net(train_x)
    
        # 计算 loss
        loss = loss_fn(y_pred.squeeze(), train_y)
    
        # 反向传播
        loss.backward()
    
        # 更新参数
        optimizer.step()
    
        # 清空梯度
        optimizer.zero_grad()
    
        # 绘图
        if iteration % 20 == 0:
    
            mask = y_pred.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类
            correct = (mask == train_y).sum()  # 计算正确预测的样本个数
            acc = correct.item() / train_y.size(0)  # 计算分类准确率
    
            plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
            plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')
    
            w0, w1 = lr_net.features.weight[0]
            w0, w1 = float(w0.item()), float(w1.item())
            plot_b = float(lr_net.features.bias[0].item())
            plot_x = np.arange(-6, 6, 0.1)
            plot_y = (-w0 * plot_x - plot_b) / w1
    
            plt.xlim(-5, 7)
            plt.ylim(-7, 7)
            plt.plot(plot_x, plot_y)
    
            plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
            plt.title("Iteration: {}
    w0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
            plt.legend()
    
            plt.show()
            plt.pause(0.5)
    
            if acc > 0.99:
                break
    

    最终结果:

    思考:

    1. 调整线性回归模型停止条件以及y = 2*x + (5 + torch.randn(20, 1))中的斜率,训练一个线性回归模型;
    2. 计算图的两个主要概念是什么?
    3. 动态图与静态图的区别是什么?
    4. 逻辑回归模型为什么可以进行二分类?
    5. 采用代码实现逻辑回归模型的训练,并尝试调整数据生成中的mean_value,将mean_value设置为更小的值,例如1,或者更大的值,例如5,会出现什么情况?
    6. 再尝试仅调整bias,将bias调为更大或者负数,模型训练过程是怎么样的?
  • 相关阅读:
    myeclipse自动生成相应对象接收返回值的快捷键
    JavaEE学习记录(一)--软件系统体系结构
    通过Java编码获取String分行字符串的内容
    长款或短款的处理(二)
    现金清查中的长款短款的简单解释(一)
    mybatis 的mapper配置文件sql语句中, 有时用到 大于, 小于等等
    <c:forEach items="${list}" var="tt" varStatus="status"> 的相关大小长度
    svn 提交 working copy is not up-to-date
    svn: Working copy 'D:workspaceweb....images' is too old (format 10, created by Subversion 1.6
    mybatis generator eclipse插件的安装
  • 原文地址:https://www.cnblogs.com/yanqiang/p/12771928.html
Copyright © 2020-2023  润新知