面试55题:
题目:二叉树的深度
题:输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。
解题思路:
①如果一棵树只有一个节点,它的深度为1
②如果根节点只有左子树而没有右子树,那么树的深度是左子树的深度加1
同样,如果根节点只有右子树而没有左子树,那么树的深度是右子树的深度加1
既有右子树又有左子树时,数的深度是左子树和右子树深度较大者加1
利用递归很容易实现上述思路:
解题代码:
# -*- coding:utf-8 -*- # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def TreeDepth(self, pRoot): # write code here if pRoot is None: return 0 left = self.TreeDepth(pRoot.left) right = self.TreeDepth(pRoot.right) return max(left,right)+1
题目拓展:平衡二叉树
输入一棵二叉树,判断该二叉树是否是平衡二叉树。
解题代码:
# -*- coding:utf-8 -*- # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def TreeDepth(self, pRoot): if pRoot is None: return 0 left = self.TreeDepth(pRoot.left) right = self.TreeDepth(pRoot.right) return max(left,right)+1 def IsBalanced_Solution(self, pRoot): # write code here if pRoot is None: return True left = self.TreeDepth(pRoot.left) right = self.TreeDepth(pRoot.right) diff = left - right if diff< -1 or diff >1: return False return self.IsBalanced_Solution(pRoot.left) and self.IsBalanced_Solution(pRoot.right)