Description
给你2个矩阵A、B,我们使用标准的矩阵相乘定义C=AB如下: A数组中栏(column)的数目一定要等于B数组中列(row)的数目才可以做此2数组的相乘。若我们以rows(A),columns(A)分 别代表A数组中列及栏的数目,要计算C数组共需要的乘法的数目为:rows(A)columns(B)columns(A)。例如:A数组是一个 10x20的矩阵,B数组是个20x15的矩阵,那么要算出C数组需要做101520,也就是3000次乘法。 要计算超过2个以上的矩阵相乘就得决定要用怎样的顺序来做。
例如:X、Y、Z都是矩阵,要计算XYZ的话可以有2种选择:(XY)Z 或者 X(YZ)。
假设X是5x10的数组,Y是10x20的数组,Z是20x35的数组,那个不同的运算顺序所需的乘法数会有不同:
(XY)Z
- 5 * 20 * 10 = 1000次乘法完成(XY),并得到一5x20的数组。
- 5 * 35 * 20 = 3500次乘法得到最后的结果。
- 总共需要的乘法的次数:1000+3500=4500。
X(YZ)
- 10 * 35 * 20 = 7000次乘法完成(YZ),并得到一10x35的数组。
- 5 * 35 * 10 = 1750次乘法得到最后的结果。
- 总共需要的乘法的次数:7000 +1750 = 8750。
很明显的,我们可以知道计算(XY)Z会使用较少次的乘法。 这个问题是:给你一些矩阵,你要写一个程序来决定该如何相乘的顺序,使得用到乘法的次数会最少。
Input
含有多组测试数据,每组测试数据的第一列,含有1个整数N(N <= 10)代表有多少个数组要相乘。接下来有N对整数,代表一数组的列数及栏数。这N个数组的顺序与要你相乘的数组顺序是一样的。N=0代表输入结束。请参考Sample Input。
Output
每组测试数据输出一列,内容为矩阵相乘的顺序(以刮号来表示)使得所用的乘法次数最小。如果有不只一组答案,输出任一组均可。请参考Sample Output。
Sample Input
3
1 5
5 20
20 1
3
5 10
10 20
20 35
6
30 35
35 15
15 5
5 10
10 20
20 25
0
Sample Output
Case 1: (A1 x (A2 x A3))
Case 2: ((A1 x A2) x A3)
Case 3: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))
递归关系:
$$ m[i][j] = egin{cases} 0 & i == j \ min_{i le k lt j} { m[i][k] + m[k+1][j] + p_{i-1}*p_k*p_j } & i<j end{cases} $$
数组m[n][n]存储最优值
数组s[n][n]存储最优时分割的位置
import java.util.Scanner;
public class Main {
static int count = 0;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int p[], m[][], s[][];
while (sc.hasNextInt()) {
int n = sc.nextInt();
if (n == 0)
break;
p = new int[n + 1];
m = new int[n + 1][n + 1];
s = new int[n + 1][n + 1];
for (int i = 0; i < n; i++) {
p[i] = sc.nextInt();
p[i + 1] = sc.nextInt();
}
matrixChain(p, m, s);
System.out.printf("Case %d: ", ++count);
print(1, n, s);
System.out.print('
');
// printmAnds(n, m, s);
}
sc.close();
}
public static void matrixChain(int p[], int m[][], int s[][]) {
int n = p.length - 1;
for (int i = 1; i <= n; i++)
m[i][i] = 0;
for (int r = 2; r <= n; r++) {
for (int i = 1; i <= n - r + 1; i++) {
int j = i + r - 1;
m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];
s[i][j] = i;
for (int k = i + 1; k < j; k++) {
int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
if (t < m[i][j]) {
m[i][j] = t;
s[i][j] = k;
}
}
}
}
}
public static void print(int i, int j, int s[][]) {
if (i == j) {
System.out.print("A" + i);
return;
}
else {
System.out.print("(");
print(i, s[i][j], s);
System.out.print(" x ");
print(s[i][j] + 1, j, s);
System.out.print(")");
}
}
// public static void printmAnds(int n, int m[][], int s[][]){
// System.out.printf("m[%d][%d]:
", n, n);
// for (int i = 1; i <= n; i++) {
// System.out.print(m[i][1]);
// for (int j = 2; j <= n; j++) {
// System.out.print(" " + m[i][j]);
// }
// System.out.print('
');
// }
//
// System.out.printf("s[%d][%d]:
", n, n);
// for (int i = 1; i <= n; i++) {
// System.out.print(s[i][1]);
// for (int j = 2; j <= n; j++) {
// System.out.print(" " + s[i][j]);
// }
// System.out.print('
');
// }
// }
}