• [Leetcode] Search in Rotated Sorted Array 系列


    Search in Rotated Sorted Array 系列题解

    题目来源:

    Search in Rotated Sorted Array

    Search in Rotated Sorted Array II


    第一版

    Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

    (i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

    You are given a target value to search. If found in the array return its index, otherwise return -1.

    You may assume no duplicate exists in the array.

    Solution

    class Solution {
    public:
        int search(vector<int>& nums, int target) {
            if (nums.empty()) return -1;
            int size = nums.size();
            int low = 0, high = size - 1, mid;
            while (low < high) {
                mid = (low + high) / 2;
                if (nums[mid] > nums[high])
                    low = mid + 1;
                else
                    high = mid;
            }
    
            if (low > 0 && target >= nums[0]) {
                high = low - 1;
                low = 0;
            } else {
                high = size - 1;
            }
            while (low <= high) {
                mid = (low + high) / 2;
                if (target == nums[mid])
                    return mid;
                else if (target > nums[mid])
                    low = mid + 1;
                else
                    high = mid - 1;
            }
            return -1;
        }
    };
    

    解题描述

    这道题题意是,给出一个数组,数组原本是升序的,但是被从中间某个位置截断,后面一段被放到前面,要求在数组中找到目标数字target的位置。这里首选的做法肯定是二分查找,不过要先用二分查找找到截断的位置,然后根据target与数组第一个元素的大小关系决定其所在半区,再进行二分查找。


    进阶版本

    Follow up for "Search in Rotated Sorted Array":

    What if duplicates are allowed?

    Would this affect the run-time complexity? How and why?

    Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.

    (i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

    Write a function to determine if a given target is in the array.

    The array may contain duplicates.

    Solution

    解法一:从左向右遍历数组,找到数组旋转的位置

    class Solution {
    public:
        bool search(vector<int>& nums, int target) {
            if (nums.empty()) return false;
            int size = nums.size();
            int low = 0, high = size - 1, mid;
            for (; low < size; low++) {
                if (low > 0 && nums[low - 1] > nums[low]) break;
            }
                    
            if (low > 0 && target >= nums[0]) {
                high = low - 1;
                low = 0;
            } else {
                high = size - 1;
            }
            while (low <= high) {
                mid = (low + high) / 2;
                if (target == nums[mid])
                    return true;
                else if (target > nums[mid])
                    low = mid + 1;
                else
                    high = mid - 1;
            }
            return false;
        }
    };
    

    解法二:使用二分查找,结合查重夹逼

    class Solution {
    public:
        bool search(vector<int>& nums, int target) {
            if (nums.empty()) return false;
            int low = 0, high = nums.size() - 1, mid;
            while (low <= high) {
                mid = (low + high) / 2;
                if (nums[mid] == target) return true;
    
                if (nums[low] == nums[mid] && nums[mid] == nums[high]) {
                    ++low;
                    --high;
                } else if (nums[low] <= nums[mid]) {
                    if (nums[low] <= target && nums[mid] > target)
                        high = mid - 1;
                    else
                        low = mid + 1;
                } else {
                    if (nums[mid] < target && nums[high] >= target)
                        low = mid + 1;
                    else
                        high = mid - 1;
                }
            }
            return false;
        }
    };
    

    解题描述

    这道题题意是,给出一个排好序的数组,在数组中间某个位置截断,将后面一段放到前面,并且数组中可能存在重复的元素,然后要求判断数组中是否存在目标数字target。上面给出了2种解法,第一种解法相对来说比较暴力,平均的时间复杂度为O(n / 2)。而第二种解法虽然在出现高低位游标元素重复的时候进行了线性移位,但是最优时间复杂度位O(log n),最差时间复杂度是O(n),相对来说还是有一定的优化。

  • 相关阅读:
    python异常处理与上下文管理器
    SpringBoot-MongoDB 索引冲突分析及解决
    补习系列(13)-springboot redis 与发布订阅
    带着canvas去流浪系列之八 碰撞
    带着canvas去流浪系列之九 粒子动画
    通过哪吒动漫豆瓣影评,带你分析python爬虫与BeautifulSoup快速入门
    Python小数据保存,有多少中分类?不妨看看他们的类比与推荐方案...
    免费试用 | 多模 NoSQL 服务GeminiDB for Cassandra 全球首发
    Vue+ElementUI项目使用webpack输出MPA
    shell的shift用法
  • 原文地址:https://www.cnblogs.com/yanhewu/p/8458489.html
Copyright © 2020-2023  润新知