Convert Sorted Array to Binary Search Tree 题解
题目来源:https://leetcode.com/problems/convert-sorted-array-to-binary-search-tree/description/
Description
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example
Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
0
/
-3 9
/ /
-10 5
Solution
class Solution {
private:
struct Task {
TreeNode **nodep;
int start, end;
Task(TreeNode **p, int s, int e) :
nodep(p), start(s), end(e) {}
};
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
if (nums.empty())
return NULL;
TreeNode *root, *node;
int start, end, mid;
queue<Task> q;
q.push(Task(&root, 0, nums.size() - 1));
while (!q.empty()) {
Task task = q.front();
q.pop();
start = task.start;
end = task.end;
if (start > end)
continue;
mid = (start + end) / 2;
node = new TreeNode(nums[mid]);
*(task.nodep) = node;
if (start == end)
continue;
q.push(Task(&(node -> left), start, mid - 1));
q.push(Task(&(node -> right), mid + 1, end));
}
return root;
}
};
解题描述
这道题题意是,将一个有序数组转换成一个BST(二分查找树),并且要求输出的BST是一棵平衡树(每个节点的左右子树高度差小于1)。解法上我用的是迭代,每次都将数组的最中间数据作为当前子树的根节点,左边的数据作为左子树,右边的数据作为右子树,将左右范围加入任务队列,循环出入队即可完成建树。这里是通过每次从中间分开左右子树来保证整棵树的平衡性。