• pytorch 7 optimizer 优化器 加速训练


    import torch
    import torch.utils.data as Data
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    
    # torch.manual_seed(1)    # reproducible
    

    超参数设置

    LR = 0.01
    BATCH_SIZE = 32
    EPOCH = 12
    
    # fake dataset
    x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
    y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
    
    # plot dataset
    plt.scatter(x.numpy(), y.numpy())
    plt.show()
    
    # put dateset into torch dataset
    torch_dataset = Data.TensorDataset(x, y)
    loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)
    
    
    # default network
    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(1, 20)   # hidden layer
            self.predict = torch.nn.Linear(20, 1)   # output layer
    
        def forward(self, x):
            x = F.relu(self.hidden(x))      # activation function for hidden layer
            x = self.predict(x)             # linear output
            return x
    
    if __name__ == '__main__':
        # different nets         
        net_SGD         = Net()
        net_Momentum    = Net()
        net_RMSprop     = Net()
        net_Adam        = Net()
        nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]  # 构造4个网络,谈们的结构都是相同的
    
        # different optimizers       
        opt_SGD         = torch.optim.SGD(net_SGD.parameters(), lr=LR)
        opt_Momentum    = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
        opt_RMSprop     = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
        opt_Adam        = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
        optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]  # 使用4个不同的优化器来优化参数  
    
        loss_func = torch.nn.MSELoss()
        losses_his = [[], [], [], []]   # 使用四个列表来记录当前的lossz值,record loss
    
        # training
        for epoch in range(EPOCH):
            print('Epoch: ', epoch)
            for step, (b_x, b_y) in enumerate(loader):          # for each training step
                for net, opt, l_his in zip(nets, optimizers, losses_his):  # 每一次循环都使用一个网络和优化器来训练,添加当前loss值进列表
                    output = net(b_x)              # get output for every net
                    loss = loss_func(output, b_y)  # compute loss for every net
                    opt.zero_grad()                # clear gradients for next train
                    loss.backward()                # backpropagation, compute gradients
                    opt.step()                     # apply gradients
                    l_his.append(loss.data.numpy())     # loss recoder
    
        labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
        for i, l_his in enumerate(losses_his):
            plt.plot(l_his, label=labels[i])
        plt.legend(loc='best')
        plt.xlabel('Steps')
        plt.ylabel('Loss')
        plt.ylim((0, 0.2))
        plt.show()
    
    • 数据

    • 4种优化器的训练过程的loss变化,下降的越快越好

    END

  • 相关阅读:
    程序员之歌 littleflute原创
    生成网站缩略图的小工具,:)
    十个习惯
    用反编译工具透析.Net页面生成本质
    装箱拆箱陷阱揭秘
    图片上传——用一般处理程序实现
    Web.config文件中常用的配置节点
    初识三层,请多指教
    匪夷所思的题目,心理慢慢引导
    权重分配方法
  • 原文地址:https://www.cnblogs.com/yangzhaonan/p/10440049.html
Copyright © 2020-2023  润新知