• pytorch 7 save_reload 保存和提取神经网络


    import torch
    import matplotlib.pyplot as plt
    
    # torch.manual_seed(1)    # reproducible
    
    # fake data
    x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
    y = x.pow(2) + 0.2*torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)
    
    # The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors
    # x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)
    

    训练网络,并用两种方式保存网络

    def save():
        # save net1
        net1 = torch.nn.Sequential(
               torch.nn.Linear(1, 10),
               torch.nn.ReLU(),
               torch.nn.Linear(10, 1)
        )
        optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
        loss_func = torch.nn.MSELoss()
    
        for t in range(100):      # 训练网络
            prediction = net1(x)
            loss = loss_func(prediction, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
        # plot result
        plt.figure(1, figsize=(10, 3))
        plt.subplot(131)
        plt.title('Net1')
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    
        # 2 ways to save the net  保存网络的两种方式,第二种只保存参数更快一点
        torch.save(net1, 'net.pkl')                       # save entire net
        torch.save(net1.state_dict(), 'net_params.pkl')   # save only the parameters
    

    加载第一种(含所有信息的)网络:torch.load('net.pkl')

    def restore_net():
        # restore entire net1 to net2
        net2 = torch.load('net.pkl')
        prediction = net2(x)
    
        # plot result
        plt.subplot(132)
        plt.title('Net2')
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    
    

    加载第二种(只含有参数的)网络:net3.load_state_dict(torch.load('net_params.pkl'))

    def restore_params():
        # restore only the parameters in net1 to net3
        net3 = torch.nn.Sequential(
               torch.nn.Linear(1, 10),
               torch.nn.ReLU(),
               torch.nn.Linear(10, 1)
        )
    
        # copy net1's parameters into net3
        net3.load_state_dict(torch.load('net_params.pkl'))
        prediction = net3(x)
    
        # plot result
        plt.subplot(133)
        plt.title('Net3')
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        plt.show()
    
    

    运行上面的函数

    # save net1  训练网络,并用两种方式保存网络
    save() 
    
    # restore entire net (may slow) 所有信息的网络
    restore_net()
    
    # restore only the net parameters 只含参数信息的网络,加载前需要重新构造与之前一模一样的网络
    restore_params()
    

    三个网络绘制的图片

    END

  • 相关阅读:
    浏览器基本的工作原理
    ES6异步操作之Promise
    vux中x-input在安卓手机输入框的删除按钮(@on-click-clear-icon)点击没反应
    浏览器工作原理
    form表单的两种提交方式,submit和button的用法
    HTML DOM submit() 方法
    JavaScript test() 方法
    eval() 函数
    正则表达式
    onblur 事件
  • 原文地址:https://www.cnblogs.com/yangzhaonan/p/10439647.html
Copyright © 2020-2023  润新知