• numpy基础篇-简单入门教程2


    import numpy as np
    

    Array 数组

    print(np.zeros((2, 2)))  # [[0. 0.] [0. 0.]]
    print(np.ones((2, 2)))  # [[1. 1.] [1. 1.]]
    print(np.full((2, 2), 7))  # [[7 7] [7 7]]
    print(np.eye(2))  # [[1. 0.] [0. 1.]]
    
    print(np.random.random((2, 2)))  # [[0.67151478 0.61234823] [0.85594251 0.0654221 ]]
    
    a = np.array(np.arange(9).reshape(3, 3))
    print(a)   # [[0 1 2] [3 4 5] [6 7 8]]
    
    print(a[0, 0])  # 0
    print(a[0][0])  # 0
    print(type(a[0, 0]))  # <class 'numpy.int64'>
    print(type(a[0][0]))  # <class 'numpy.int64'>
    print(a[0, 0].shape)  # ()
    print(a[0][0].shape)  # ()
    
    print(a[1, :])  # [3 4 5]
    print(a[1][:])  # [3 4 5]
    print(type(a[1, :]))  # <class 'numpy.ndarray'>
    print(type(a[1][:]))  # <class 'numpy.ndarray'>
    print(a[1, :].shape)  # (3,)
    print(a[1][:].shape)  # (3,)
    
    a = np.array(np.arange(9).reshape(3, 3))
    print(a)  # [[0 1 2] [3 4 5]  [6 7 8]]
    
    print(a[1, :])  # [3 4 5]
    print(a[1:2, :])  # [[3 4 5]]
    print(a[1, :].shape)  # (3,)
    print(a[1:2, :].shape)  # (1, 3)
    
    print(a[:, 1])  # [1 4 7]
    print(a[:, 1:2])  # [[1] [4] [7]]
    print(a[:, 1].shape)  # (3,)
    print(a[:, 1:2].shape)  # (3, 1)
    
    a = np.array(np.arange(1, 7, 1).reshape(3, 2))
    print(a)  # [[1 2] [3 4] [5 6]]
    print(a[[0, 1, 2], [0, 1, 0]])  # [1 4 5]
    print(np.array([a[0, 0], a[1, 1], a[2, 0]]))  # [1 4 5]
    
    a = np.array(np.arange(1, 13, 1).reshape(3, 4))
    print(a)  # [[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
    b = np.array([0, 2])
    print(a[np.arange(1, 3, 1), b])  # [ 5 11]
    a[np.arange(1, 3, 1), b] += 10
    print(a)  # [[ 1  2  3  4] [15  6  7  8] [ 9 10 21 12]]
    

    bool 布尔

    a = np.array(np.arange(1, 7, 1).reshape(3, 2))
    
    print(a)  # [[1 2] [3 4] [5 6]]
    
    bool_idx = (a > 2)
    
    print(bool_idx)  # [[False False] [ True  True] [ True  True]]
    print(a[bool_idx])  # [3 4 5 6]
    print(a[a > 2])  # [3 4 5 6]
    

    type 类型

    x = np.array([1, 2])
    print(x.dtype)  # int64
    
    x = np.array([1.0, 2.0])
    print(x.dtype)  # float64
    
    x = np.array([1, 2], dtype=np.int8)
    print(x.dtype)  # int8
    

    基本运算

    x = np.array(np.arange(1, 5, 1).reshape(2, 2), dtype=np.float64)
    y = np.array(np.arange(5, 9, 1).reshape(2, 2), dtype=np.float64)
    
    print(x)  # [[1. 2.] [3. 4.]]
    print(y)  # [[5. 6.] [7. 8.]]
    
    print(x + y)
    print(np.add(x, y))  # [[ 6.  8.] [10. 12.]]
    
    print(x - y)
    print(np.subtract(x, y))  # [[-4. -4.]  [-4. -4.]]
    
    print(x * y)
    print(np.multiply(x, y))  # [[ 5. 12.]  [21. 32.]]
    
    print(x / y)
    print(np.divide(x, y))  # [[0.2        0.33333333] [0.42857143 0.5       ]]
    
    print(np.sqrt(x))  # [[1.         1.41421356] [1.73205081 2.        ]]
    

    矩阵乘法

    x = np.array([[1, 2], [3, 4]])
    y = np.array([[5, 6], [7, 8]])
    
    v = np.array([9, 10])
    w = np.array([11, 12])
    
    print(v.dot(w))
    print(np.dot(v, w))  # 219
    
    print(x.dot(v))
    print(np.dot(x, v))  # [29 67]
    
    print(x.dot(y))
    print(np.dot(x, y))  # [[19 22]  [43 50]]
    

    sum 求和

    x = np.array([[1, 2], [3, 4]])
    
    print(x)  # [[1 2] [3 4]]
    print(np.sum(x))  # 10
    print(np.sum(x, axis=0))  # [4 6]  Compute sum of each column
    print(np.sum(x, axis=1))  # [3 7]  Compute sum of each row
    

    .T 转置

    x = np.array([[1, 2], [3, 4]])
    v = np.array([1, 2, 3])
    
    print(x.T)  # [[1 3] [2 4]]    2D array
    print(v.T)  # [1 2 3]     1D array
    

    broadcasting 广播

    x = np.array(np.arange(1, 13, 1).reshape(4, 3))  # [[ 1  2  3] [ 4  5  6] [ 7  8  9] [10 11 12]]
    v = np.array([1, 0, 1])
    y = np.empty_like(x)
    
    print(y)  # [[ 1  2  3] [ 4  5  6]  [ 7  8  9] [10 11 12]]
    
    for i in range(4):
        y[i, :] = x[i, :] + v
    
    print(y)  # [[ 2  2  4] [ 5  5  7] [ 8  8 10] [11 11 13]]
    
    x = np.array(np.arange(1, 13, 1).reshape(4, 3))
    v = np.array([1, 0, 1])
    vv = np.tile(v, (4, 1))  # [[1 0 1]  [1 0 1] [1 0 1] [1 0 1]]
    y = x + vv
    
    print(y)  # [[ 2  2  4] [ 5  5  7] [ 8  8 10] [11 11 13]]
    
    y = x + v  # broadcaste
    
    print(y)  # [[ 2  2  4] [ 5  5  7] [ 8  8 10] [11 11 13]]
    
    v = np.array([1, 2, 3])
    w = np.array([4, 5])
    
    print(np.reshape(v, (3, 1)) * [0, 1, 2])  # [[0 1 2] [0 2 4] [0 3 6]]  w has 3 numbers,so has 3 rows
    x = np.array([[1, 2, 3], [4, 5, 6]])
    
    print(x + v)  # [[2 4 6] [5 7 9]]
    print((x.T + w).T)  # [[ 5  6  7] [ 9 10 11]]
    print(x + np.reshape(w, (2, 1)))  # [[ 5  6  7] [ 9 10 11]]
    print(x * 2)  # [[ 2  4  6] [ 8 10 12]]
    
  • 相关阅读:
    [LC] 131. Palindrome Partitioning
    [LC] 216. Combination Sum III
    [LC] 90. Subsets II
    [Algo] 73. Combinations Of Coins
    [Algo] 66. All Valid Permutations Of Parentheses I
    Hive 和 HBase区别
    form表单 多种提交方式 [转]
    HDFS 好的文章链接
    js 获取字符串的 像素 宽度 ----字符串格式化输出
    python 本地变量和全局变量 locals() globals() global nonlocal 闭包 以及和 scala 闭包的区别
  • 原文地址:https://www.cnblogs.com/yangzhaonan/p/10427462.html
Copyright © 2020-2023  润新知