• (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法模板的整理与介绍



     这一篇博客以一些OJ上的题目为载体。整理一下最短路径算法。会陆续的更新。。。

       


    一、多源最短路算法——floyd算法

           floyd算法主要用于求随意两点间的最短路径。也成最短最短路径问题。

           核心代码:

           

    /**
     *floyd算法
     */
    void floyd() {
    	int i, j, k;
    	for (k = 1; k <= n; ++k) {//遍历全部的中间点
    		for (i = 1; i <= n; ++i) {//遍历全部的起点
    			for (j = 1; j <= n; ++j) {//遍历全部的终点
    				if (e[i][j] > e[i][k] + e[k][j]) {//假设当前i-->j的距离大于i-->k--->j的距离之和
    					e[i][j] = e[i][k] + e[k][j];//更新从i--->j的最短路径
    				}
    			}
    		}
    	}
    }

        时间复杂度:O(N^3)

        不能使用的情况:边中含有负权值


    例题:

    1、WIKIOI 1077  多源最短路 

    分析:这道题是floyd的裸题。

    大家仅仅要理解了floyd的思想以后,基本非常快就能解答出来了。唯一须要注意的地方就是

    这道题的map[][]矩阵中的顶点默认是从1開始。

    假设顶点是从0開始算的须要做一下处理:printf("%d ",map[a-1][b-1]);


    /*
     * 1077.cpp
     *
     *  Created on: 2014年5月23日
     *      Author: pc
     */
    
    #include <iostream>
    #include <cstdio>
    
    using namespace std;
    
    const int maxn = 105;
    int e[maxn][maxn];
    int n;
    
    const int inf = 99999999;
    
    void initial() {
    	int i, j;
    	for (i = 1; i <= n; ++i) {
    		for (j = 1; j <= n; ++j) {
    			if (i == j) {
    				e[i][j] = 0;
    			} else {
    				e[i][j] = inf;
    			}
    		}
    	}
    }
    
    /**
     *floyd算法
     */
    void floyd() {
    	int i, j, k;
    	for (k = 1; k <= n; ++k) {//遍历全部的中间点
    		for (i = 1; i <= n; ++i) {//遍历全部的起点
    			for (j = 1; j <= n; ++j) {//遍历全部的终点
    				if (e[i][j] > e[i][k] + e[k][j]) {//假设当前i-->j的距离大于i-->k--->j的距离之和
    					e[i][j] = e[i][k] + e[k][j];//更新从i--->j的最短路径
    				}
    			}
    		}
    	}
    }
    
    int main() {
    	while (scanf("%d", &n) != EOF) {
    
    		initial();
    
    		int i, j;
    		for (i = 1; i <= n; ++i) {
    			for (j = 1; j <= n; ++j) {
    				scanf("%d", &e[i][j]);
    			}
    		}
    
    		floyd();
    		int q;
    		scanf("%d", &q);
    		while (q--) {
    			int a, b;
    			scanf("%d %d", &a, &b);
    
    			printf("%d
    ", e[a][b]);
    		}
    
    	}
    
    	return 0;
    }
    


    下面是自己再次做这道题的时候的代码:

    /*
     * WIKIOI_1077.cpp
     *
     *  Created on: 2014年9月6日
     *      Author: pc
     */
    
    
    #include <iostream>
    #include <cstdio>
    
    const int maxn = 105;
    const int inf = 999999;
    
    int map[maxn][maxn];
    
    void initial(int n){
    	int i;
    	int j;
    	for(i = 0 ; i < n ; ++i){
    		for(j = 0 ; j < n ; ++j){
    			if(i == j){
    				map[i][j] = 0;
    			}else{
    				map[i][j] =  inf;
    			}
    		}
    	}
    }
    
    void floyd(int n){
    	int i;
    	int j;
    	int k;
    	for(k = 0 ; k < n ; ++k){//顶点从0開始算》。

    。 for(i = 0 ; i < n ; ++i){ for(j = 0 ; j < n ; ++j){ if(map[i][j] > map[i][k] + map[k][j]){ map[i][j] = map[i][k] + map[k][j]; } } } } } int main(){ int n; scanf("%d",&n); initial(n); int i; int j; for(i = 0 ; i < n ; ++i){ for(j = 0 ; j < n ; ++j){ int c; scanf("%d",&c); map[i][j] = c; } } floyd(n); int q; scanf("%d",&q); while(q--){ int a,b; scanf("%d %d",&a,&b); printf("%d ",map[a-1][b-1]); } return 0; }





    二、单源最短路径算法——dijkstra

           1、思想描写叙述:当Q(一開始为全部节点的集合)非空时。不断地将Q中的最小值u取出,然后放到S(最短路径的节点的集合)集合中,然后遍历全部与u邻接的边。假设能够进行松弛,则对便进行对应的松弛。

           2、实现

     

    /**
     * 返回从v---->到target的最短路径
     */
    int dijkstra(int v){
    	int i;
    	for(i = 1 ; i <= n ; ++i){//初始化
    		s[i] = 0;//一開始。全部的点均为被訪问过
    		dis[i] = map[v][i];
    	}
            dis[v] = 0; 
            s[v] = true;
    	for(i = 1 ; i < n ; ++i){
    		int min = inf;
    		int pos;
    
    		int j;
    		for(j = 1 ; j <= n ; ++j){//寻找眼下的最短路径的最小点
    			if(!s[j] && dis[j] < min){
    				min = dis[j];
    				pos = j;
    			}
    		}
    
    		s[pos] = 1;
    
    		for(j = 1 ; j <= n ; j++){//遍历u的全部的邻接的边
    			if(!s[j] && dis[j] > dis[pos] + map[pos][j]){
    				dis[j] = dis[pos] + map[pos][j];//对边进行松弛
    			}
    		}
    	}
    
    
    	return dis[target];
    }
    

            3、基本结构

        

    int s[maxn];//用来记录某一点是否被訪问过
    int map[maxn][maxn];//地图
    int dis[maxn];//从原点到某一个点的最短距离(一開始是估算距离)

    4、条件:使用dijkstra解决的题目一般有下面的特征:

    给出点的数目、边的数目、起点和终点、边的信息(,而且边不包括负边权的值).求从起点到终点的最短路径的距离

    起点:用于dijkstra(int v)中的v

    终点:用于return dis[target]中的target

    边的信息:用于初始化map[][]


    5、算法运行过程分析

     如图:求0点到其它点的最短路径。

    (1)開始时,s1={v0},s2={v1,v2,v3,v4},v0到各点的最短路径是{0,10,&,30,100};
    (2)在还未进入s1的顶点之中。最短路径为v1。因此s1={v0,v1},因为v1到v2有路径,因此v0到各点的最短路径更新为{0,10,60,30,100};
    (3)在还未进入s1的顶点之中。最短路径为v3,因此s1={v0,v1,v3},因为v3到v2、v4有路径,因此v0到各点的最短路径更新为{0,10,50,30,90};
    (4)在还未进入s1的顶点之中。最短路径为v2,因此s1={v0,v1,v3,v2},因为v2到v4有路径。因此v0到各点的最短路径更新为{0,10,50,30,60};




    例题:

    1、NEFU 207 最小树

    题目与分析:

    这一道题。抽象一下,描写叙述例如以下:“求从a到b的最短路径的距离”。

    floyd:解决多源最短路径问题。求随意两个点之间的最短路径。这当然也就包括了“从a到b的这样的情况”。所以这道题也能够使用floyd来解决

    dijkstra:解决单源最短路径问题 。最典型的就是解决“从a到b的最短路径的距离”的这样的问题了。

    下面分别给出这两种算法的解题方法

    1)使用floyd

    /*
     * NEFU_207.cpp
     *
     *  Created on: 2014年5月27日
     *      Author: pc
     */
    
    #include <iostream>
    #include <cstdio>
    
    using namespace std;
    
    const int maxn = 105;
    const int inf = 99999999;
    int e[maxn][maxn];
    
    int n,m;
    
    void initial(){
    	int i;
    	int j;
    	for(i = 1 ; i <= n ; ++i){
    		for(j = 1 ; j <= n ; ++j){
    			if(i == j){
    				e[i][j] = 0;
    			}else{
    				e[i][j] = inf;
    			}
    		}
    	}
    }
    
    
    void floyd(){
    	int i;
    	int j;
    	int k;
    
    	for(k = 1 ; k <= n ; ++k){
    		for(i = 1 ; i <= n ; ++i){
    			for(j = 1 ; j <= n ; ++j){
    				if(e[i][j] > e[i][k] + e[k][j]){
    					e[i][j] = e[i][k] + e[k][j];
    				}
    			}
    		}
    	}
    }
    
    
    int main(){
    	while(scanf("%d%d",&n,&m)!=EOF){
    		initial();
    
    		int i;
    		for(i = 1 ; i <= m ; ++i){
    			int a,b,c;
    		    scanf("%d%d%d",&a,&b,&c);
    		    e[a][b] = e[b][a] = c;
    		}
    
    		floyd();
    
    		printf("%d
    ",e[1][n]);
    	}
    
    	return 0;
    }
    
    
    
    


    2)使用dijkstra

    /*
     * NEFU_207.cpp
     *
     *  Created on: 2014年5月27日
     *      Author: pc
     */
    
    
    #include <iostream>
    #include <cstdio>
    
    using namespace std;
    
    const int maxn = 105;
    const int inf = 9999999;
    
    int s[maxn];//用来记录某一点是否被訪问过
    int map[maxn][maxn];//地图
    int dis[maxn];//从原点到某一个点的最短距离(一開始是估算距离)
    
    int n;
    int target;
    
    /**
     * 返回从v---->到target的最短路径
     */
    int dijkstra(int v){
    	int i;
    	for(i = 1 ; i <= n ; ++i){//初始化
    		s[i] = 0;//一開始,全部的点均为被訪问过
    		dis[i] = map[v][i];
    	}
    
    
    	for(i = 1 ; i < n ; ++i){
    		int min = inf;
    		int pos;
    
    		int j;
    		for(j = 1 ; j <= n ; ++j){//寻找眼下的最短路径的最小点
    			if(!s[j] && dis[j] < min){
    				min = dis[j];
    				pos = j;
    			}
    		}
    
    		s[pos] = 1;
    
    		for(j = 1 ; j <= n ; j++){//遍历u的全部的邻接的边
    			if(!s[j] && dis[j] > dis[pos] + map[pos][j]){
    				dis[j] = dis[pos] + map[pos][j];//对边进行松弛
    			}
    		}
    	}
    
    
    	return dis[target];
    }
    
    
    
    int main(){
    	int m;
    	while(scanf("%d%d",&n,&m)!=EOF){
    
    		int i;
    		int j;
    		for(i = 1 ; i <= n ; ++i){
    			for(j = 1 ; j <= n ; ++j){
    				if(i == j){
    					map[i][j] = 0;
    				}else{
    					map[i][j] = inf;
    				}
    			}
    		}
    
    
    		for(i = 1 ; i <= m ; ++i){
    			int a,b,c;
    			scanf("%d%d%d",&a,&b,&c);
    
    			map[a][b] = map[b][a] = c;//这里默认是无向图。。所以要两个方向都做处理,仅仅做一个方向上的处理会WA
    		}
    
    		target = n;
    		int result = dijkstra(1);
    
    		printf("%d
    ",result);
    	}
    
    	return 0;
    }
    
    


    三、使用bellman-ford算法

    bellmen-ford算法介绍:

           思想:事实上bellman-ford的思想和dijkstra的是非常像的,其关键点都在于不断地对边进行松弛。

    而最大的差别就在于前者能作用于负边权的情况。事实上现思路还是在求出最短路径后。推断此刻是否还能对便进行松弛,假设还能进行松弛,便说明还有负边权的边

           实现:

    bool bellmen_ford(){
    	int i;
    	for(i = 1 ; i <= n ; ++i){//初始化
    		dis[i] = inf;
    	}
    
    	dis[source] = 0;//源节点到自己的距离为0
    
    	int j;
    	for(i = 1 ; i < n ; ++i){//计算最短路径
    		for(j = 1 ; j <= m ; ++j){
    			if(dis[edge[j].v] > dis[edge[j].u] + edge[j].weight){
    				dis[edge[j].v] = dis[edge[j].u] + edge[j].weight;
    			}
    
    			if(dis[edge[j].u] > dis[edge[j].v] + edge[j].weight){
    				dis[edge[j].u] = dis[edge[j].v] + edge[j].weight;
    			}
    		}
    	}
    
    	for(j = 1 ; j <= m ; ++j){//推断是否有负边权的边
    		if(dis[edge[j].v] > dis[edge[j].u] + edge[j].weight){
    			return false;
    		}
    	}
    
    	return true;
    }


    基本结构:

    struct Edge{
    	int u;
    	int v;
    	int weight;
    };
    
    Edge edge[maxm];//用来存储边
    int dis[maxn];//dis[i]表示源点到i的距离.一開始是估算距离


     条件:事实上求最短路径的题目的基本条件都是点数、边数、起点、终点

    一下给出这一道题的bellman-ford的实现方法

    /*
     * NEFU_207_BF.cpp
     *
     *  Created on: 2014年5月28日
     *      Author: Administrator
     */
    
    #include <iostream>
    #include <cstdio>
    
    using namespace std;
    
    const int maxn = 105;
    const int maxm = 105;
    
    struct Edge{
    	int u;
    	int v;
    	int weight;
    };
    
    Edge edge[maxm];//用来存储边
    int dis[maxn];//dis[i]表示源点到i的距离.一開始是估算距离
    
    const int inf = 1000000;
    
    int source;
    int n,m;
    
    bool bellmen_ford(){
    	int i;
    	for(i = 1 ; i <= n ; ++i){//初始化
    		dis[i] = inf;
    	}
    
    	dis[source] = 0;//源节点到自己的距离为0
    
    	int j;
    	for(i = 1 ; i < n ; ++i){//计算最短路径
    		for(j = 1 ; j <= m ; ++j){
    			if(dis[edge[j].v] > dis[edge[j].u] + edge[j].weight){
    				dis[edge[j].v] = dis[edge[j].u] + edge[j].weight;
    			}
    
    			if(dis[edge[j].u] > dis[edge[j].v] + edge[j].weight){
    				dis[edge[j].u] = dis[edge[j].v] + edge[j].weight;
    			}
    		}
    	}
    
    	for(j = 1 ; j <= m ; ++j){//推断是否有负边权的边
    		if(dis[edge[j].v] > dis[edge[j].u] + edge[j].weight){
    			return false;
    		}
    	}
    
    	return true;
    }
    
    int main(){
    	while(scanf("%d%d",&n,&m)!=EOF){
    		int i;
    		for(i = 1 ; i <= m ; ++i){
    			scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].weight);
    		}
    
    		source = 1;
    
    		bellmen_ford();
    
    		printf("%d
    ",dis[n]);
    	}
    
    	return 0;
    }
    
    




    四、使用spfa算法来解决。

          思想:用于求单源最短路径,能够适用于负边权的情况。spfa(Shortest Path Faster Algorithm)算法事实上不是什么非常难理解的算法。它仅仅是bellman-ford的队列优化而已。

          模板:

    #include <iostream>
    #include <cstring>
    #include <queue>
    using namespace std;
    
    const int N = 105;
    const int INF = 99999999;
    
    int map[N][N], dist[N];
    bool visit[N];
    int n, m;
    
    void init() {//初始化
    	int i, j;
    	for (i = 1; i < N; i++) {
    		for (j = 1; j < N; j++) {
    			if (i == j) {
    				map[i][j] = 0;
    			} else {
    				map[i][j] = map[j][i] = INF;
    			}
    		}
    	}
    }
    
    /**
     * SPFA算法.
     * 使用spfa算法来求单元最短路径
     * 參数说明:
     * start:起点
     */
    void spfa(int start) {
    	queue<int> Q;
    
    	int i, now;
    	memset(visit, false, sizeof(visit));
    	for (i = 1; i <= n; i++){
    		dist[i] = INF;
    	}
    
    	dist[start] = 0;
    	Q.push(start);
    	visit[start] = true;
    	while (!Q.empty()) {
    		now = Q.front();
    		Q.pop();
    		visit[now] = false;
    		for (i = 1; i <= n; i++) {
    			if (dist[i] > dist[now] + map[now][i]) {
    				dist[i] = dist[now] + map[now][i];
    				if (visit[i] == 0) {
    					Q.push(i);
    					visit[i] = true;
    				}
    			}
    		}
    	}
    }


    这道题的代码例如以下:

    /*
     * NEFU207.CPP
     *
     *  Created on: 2015年3月26日
     *      Author: Administrator
     */
    
    
    #include <iostream>
    #include <cstring>
    #include <queue>
    using namespace std;
    
    const int N = 105;
    const int INF = 99999999;
    
    int map[N][N], dist[N];
    bool visit[N];
    int n, m;
    
    void init() {//初始化
    	int i, j;
    	for (i = 1; i < N; i++) {
    		for (j = 1; j < N; j++) {
    			if (i == j) {
    				map[i][j] = 0;
    			} else {
    				map[i][j] = map[j][i] = INF;
    			}
    		}
    	}
    }
    
    /**
     * SPFA算法.
     * 使用spfa算法来求单元最短路径
     * 參数说明:
     * start:起点
     */
    void spfa(int start) {
    	queue<int> Q;
    
    	int i, now;
    	memset(visit, false, sizeof(visit));
    	for (i = 1; i <= n; i++){
    		dist[i] = INF;
    	}
    
    	dist[start] = 0;
    	Q.push(start);
    	visit[start] = true;
    	while (!Q.empty()) {
    		now = Q.front();
    		Q.pop();
    		visit[now] = false;
    		for (i = 1; i <= n; i++) {
    			if (dist[i] > dist[now] + map[now][i]) {
    				dist[i] = dist[now] + map[now][i];
    				if (visit[i] == 0) {
    					Q.push(i);
    					visit[i] = true;
    				}
    			}
    		}
    	}
    }
    
    int main(){
    	while(scanf("%d%d",&n,&m)!=EOF){
    		init();
    
    		while(m--){
    			int a,b,c;
    			scanf("%d%d%d",&a,&b,&c);
    
    			if(map[a][b] > c){
    				map[a][b] = map[b][a] = c;
    			}
    		}
    
    		spfa(1);
    		printf("%d
    ",dist[n]);
    	}
    
    	return 0;
    }
    





    2、NEFU 313 最短路径问题

    题目与分析:

           这一道题。抽象一下。还是“求从a到b的最短距离”。相同能够使用floyd和dijkstra来做。

    和上面那道题有点不同的地方就是:由序号点(用序号来描写叙述的点)变成了xy点(用坐标系来描写叙述的点)....算法部分该怎么写还是怎么写。。仅仅是


    观察一下。题目已经给出点数、边数、起点、终点

    在“最短路径”的对应的题目中。5个基本条件中已经知道了4个,还差边的信息。即map[][]数据的记录不再有题目给出,而是须要自己写一个distance函数来计算一下


    1、floyd

    /*
     * NEFU_313.cpp
     *
     *  Created on: 2014年5月27日
     *      Author: pc
     */
    
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    
    using namespace std;
    
    const int maxn = 105;
    
    double map[maxn][maxn];
    
    int n;
    const int inf = INT_MAX;
    struct Pointt {
    	double x;
    	double y;
    };
    
    double distance1(Pointt p1, Pointt p2) {
    	return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
    }
    
    void initial() {
    	int i;
    	int j;
    
    	for (i = 1; i <= n; ++i) {
    		for (j = 1; j <= n; ++j) {
    			if (i == j) {
    				map[i][j] = 0;
    			} else {
    				map[i][j] = inf;
    			}
    		}
    	}
    }
    void floyd() {
    	int i;
    	int j;
    
    	int k;
    	for (k = 1; k <= n; ++k) {
    		for (i = 1; i <= n; ++i) {
    			for (j = 1; j <= n; ++j) {
    				if (map[i][j] > map[i][k] + map[k][j]) {
    					map[i][j] = map[i][k] + map[k][j];
    				}
    			}
    		}
    	}
    }
    
    int main() {
    	while (scanf("%d", &n) != EOF) {
    		int i;
    
    		Pointt p[n + 1];
    
    		for (i = 1; i <= n; ++i) {
    			scanf("%lf%lf", &p[i].x, &p[i].y);
    		}
    
    		int m;
    		scanf("%d", &m);
    
    		initial();
    
    		for (i = 1; i <= m; ++i) {
    			int a, b;
    			scanf("%d%d", &a, &b);
    
    			map[a][b] = map[b][a] = distance1(p[a], p[b]);
    		}
    
    		floyd();
    
    		int start, end;
    		scanf("%d%d", &start, &end);
    
    		printf("%.2lf
    ", map[start][end]);
    
    	}
    
    	return 0;
    }
    
    



    2、dijkstra

    /*
     * NEFU_313.cpp
     *
     *  Created on: 2014年5月27日
     *      Author: pc
     */
    
    
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    
    using namespace std;
    
    const int maxn = 105;
    const int inf = INT_MAX;
    
    int s[maxn];
    double dis[maxn];
    double map[maxn][maxn];
    
    int n;
    int target;
    
    struct Pointt{
    	double x;
    	double y;
    };
    
    double distance1(Pointt p1, Pointt p2){
    	return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y));
    }
    
    double dijkstra(int v){
    	int i;
    	for(i =1 ; i <= n ; ++i){
    		s[i] = 0;
    		dis[i] = map[v][i];
    	}
    
    
    
    	for(i = 1 ; i < n; ++i){
    		double min = inf;
    		int pos;
    
    		int j;
    		for(j = 1 ; j <= n ; ++j){
    			if(!s[j] && dis[j] < min){
    				min = dis[j];
    				pos = j;
    			}
    		}
    
    		s[pos] = 1;
    
    		for(j = 1 ; j <= n ; ++j){
    			if(!s[j] && dis[j] > dis[pos] + map[pos][j]){
    				dis[j] = dis[pos] + map[pos][j];
    			}
    		}
    	}
    	return  dis[target];
    }
    
    
    void printfMap(){
    	int i;
    	int j;
    	for(i = 1 ; i <= n ; ++i){
    		for(j = 1 ; j <= n ; ++j){
    			printf("%lf " ,map[i][j]);
    		}
    
    		printf("
    ");
    	}
    }
    
    int main(){
    	while(scanf("%d",&n)!=EOF){
    		Pointt p[n+1];
    
    		int i;
    		for(i = 1 ; i <= n ; ++i){
    			scanf("%lf%lf",&p[i].x,&p[i].y);
    		}
    
    		int j;
    		for(i = 1 ; i <= n ; ++i){
    			for(j = 1 ; j <= n ; ++j){
    				if(i == j){
    					map[i][j] = 0;
    				}else{
    					map[i][j] = inf;
    				}
    			}
    		}
    
    
    		int m;
    		scanf("%d",&m);
    		for(i = 1 ; i <= m ; ++i){
    			int a,b;
    			scanf("%d%d",&a,&b);
    			map[a][b] = map[b][a] = distance1(p[a],p[b]);
    		}
    
    		int start;
    		scanf("%d%d",&start,&target);
    
    
    		double result = dijkstra(start);
    
    		printf("%.2lf
    ",result);
    	}
    
    	return 0;
    }
    


    下面是再次做这道题的时候的代码:

    /*
     * NEFU_313.cpp
     *
     *  Created on: 2014年9月6日
     *      Author: pc
     */
    
    #include <iostream>
    #include <cstdio>
    #include <math.h>
    
    
    using namespace std;
    
    const int maxn = 105;
    const int inf = 99999;
    
    
    int s[maxn];
    double dis[maxn];
    double map[maxn][maxn];
    
    int n;
    int target;
    
    struct Point{
    	int x;
    	int y;
    }p[maxn];
    
    double mydistance(Point a,Point b){
    
    	return sqrt(pow(a.x-b.x,2) + pow(a.y - b.y,2));
    }
    
    
    void initial(){
    	int i;
    	int j;
    	for(i = 1 ; i <= n ; ++i){
    		for(j = 1 ; j <= n ; ++j){
    			if(i == j){
    				map[i][j] = 0;
    			}else{
    				map[i][j] = inf;
    			}
    		}
    	}
    }
    
    
    double dijkstra(int v){
    	int i;
    	for(i = 1 ; i <= n ; ++i){
    		s[i] = false;
    		dis[i] = map[v][i];
    	}
    
    	int j;
    	for(i = 1 ; i < n ; ++i){
    		double min = inf;
    		int pos;
    
    		for(j = 1 ; j <= n ; ++j){
    			if(!s[j] && min > dis[j]){
    				min = dis[j];
    				pos = j;
    			}
    		}
    
    		s[pos] = true;
    
    
    		for(j = 1 ; j <= n ; ++j){
    			if(!s[j] && dis[j] > dis[pos] + map[pos][j]){
    				dis[j] = dis[pos] + map[pos][j];
    			}
    		}
    	}
    
    	return dis[target];
    }
    
    
    
    int main(){
    	while(scanf("%d",&n)!=EOF){
    		int i;
    		for(i = 1 ; i <= n ; ++i){
    			scanf("%d%d",&p[i].x,&p[i].y);
    		}
    
    		initial();
    
    		int m;
    		scanf("%d",&m);
    		for(i = 1 ; i <= m ; ++i){
    			int a,b;
    			scanf("%d%d",&a,&b);
    
    			double c = mydistance(p[a],p[b]);
    			if(map[a][b] > c){
    				map[a][b] = map[b][a] = c;//注意,这里是无向图,还是得做一下处理才好,否则会WA
    			}
    		}
    
    
    	    int v;
    	    scanf("%d%d",&v,&target);
    
    	    double result = dijkstra(v);
    
    	    printf("%.2lf
    ",result);
    
    	}
    
    	return 0;
    }
    
    


    3)spfa算法

    /*
     * NEFU313.cpp
     *
     *  Created on: 2015年3月26日
     *      Author: Administrator
     */
    
    
    
    
    #include <iostream>
    #include <cstring>
    #include <queue>
    #include <cmath>
    
    
    using namespace std;
    
    const int N = 105;
    const int INF = 99999999;
    
    struct Point{
    	double x;
    	double y;
    }points[N];
    
    double getDistance(Point p1,Point p2){
    	return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
    }
    
    double map[N][N];
    double dist[N];
    bool visit[N];
    int n, m;
    
    void init() {//初始化
    	int i, j;
    	for (i = 1; i < N; i++) {
    		for (j = 1; j < N; j++) {
    			if (i == j) {
    				map[i][j] = 0;
    			} else {
    				map[i][j] = map[j][i] = INF;
    			}
    		}
    	}
    }
    
    /**
     * SPFA算法.
     * 使用spfa算法来求单元最短路径
     * 參数说明:
     * start:起点
     */
    void spfa(int start) {
    	queue<int> Q;
    
    	int i, now;
    	memset(visit, false, sizeof(visit));
    	for (i = 1; i <= n; i++){
    		dist[i] = INF;
    	}
    
    	dist[start] = 0;
    	Q.push(start);
    	visit[start] = true;
    	while (!Q.empty()) {
    		now = Q.front();
    		Q.pop();
    		visit[now] = false;
    		for (i = 1; i <= n; i++) {
    			if (dist[i] > dist[now] + map[now][i]) {
    				dist[i] = dist[now] + map[now][i];
    				if (visit[i] == 0) {
    					Q.push(i);
    					visit[i] = true;
    				}
    			}
    		}
    	}
    }
    
    int main(){
    	while(scanf("%d",&n)!=EOF){
    		init();
    
    		int i;
    		for(i = 1 ; i <= n ; ++i){
    			scanf("%lf%lf",&points[i].x,&points[i].y);
    		}
    
    		scanf("%d",&m);
    
    		while(m--){
    			int a,b;
    			scanf("%d%d",&a,&b);
    
    			map[a][b] = map[b][a] = getDistance(points[a],points[b]);
    		}
    
    		int start,end;
    		scanf("%d%d",&start,&end);
    
    		spfa(start);
    
    		printf("%.2lf
    ",dist[end]);
    	}
    }
    




    3、NEFU 208 宫锁珠帘

    题目与分析:

    这道题抽象一下,还是“求从a到b的最短距离”。。相同能够使用floyd和dijkstra来做。。

    这道题与前面的不同的地方在于:两个点之间可能有多条路(我们保存那条最短的就可以)。

    另外,还要理解dijkstra和floyd算法中使用到的map[][]矩阵的含义。

    map[i][i] = 0.自己到自己的距离为0

    map[i][j] = inf .表示两点之间无法连通


    下面是分别用dijkstra、floyd、spfa这三种算法来做的代码。须要注意的是这道题顶点序号的范围是0~n-1,而之前做的题目的定点序号范围都是1~n。


    1、floyd

    /*
     * NEFU_208.cpp
     *
     *  Created on: 2014年5月27日
     *      Author: pc
     */
    
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    
    using namespace std;
    
    const int maxn = 105;
    const int inf = 10005;
    //const int inf = INT_MAX; //注意不要轻易使用INT_MAX.假设这里使用了INT_MAX,那么假设2个inf相加的话,那么久整数溢出了...
    
    int n;
    int map[maxn][maxn];
    
    
    void initial(){
    	int i;
    	int j;
    	for(i = 0 ; i < n ; ++i){
    		for(j = 0 ; j < n ; ++j){
    			if(i == j){
    				map[i][j] = 0;
    			}else{
    				map[i][j] = inf;
    			}
    		}
    	}
    }
    
    
    void floyd(){
    	int i;
    	int j;
    
    	int k;
    	for( k = 0 ; k < n ; ++k){
    		for(i = 0 ; i < n ; ++i){
    			for(j = 0 ; j < n ; ++j){
    				if(map[i][j] > map[i][k] + map[k][j]){
    					map[i][j] = map[i][k] + map[k][j];
    				}
    			}
    		}
    	}
    }
    
    void printfMap(){
    	int i;
    	int j;
    	for(i = 0 ; i < n ; ++i){
    		for(j = 0 ; j < n ; ++j){
    			printf("%d " ,map[i][j]);
    		}
    
    		printf("
    ");
    	}
    }
    
    int main(){
    	int m;
    	while(scanf("%d%d",&n,&m)!=EOF){
    
    		initial();
    
    		int i;
    		for(i = 1 ; i <= m ; ++i){
    			int a,b,c;
    			scanf("%d%d%d",&a,&b,&c);
    
    			if(c < map[a][b]){//用来解决两个点之间可能有多条道路的问题
    				map[a][b] = map[b][a] = c;
    			}
    		}
    
    
    		floyd();
    
    
    		int start,end;
    
    		scanf("%d%d",&start,&end);
    
    		if(map[start][end] == inf){
    			printf("-1
    ");
    		}else{
    			printf("%d
    ",map[start][end]);
    		}
    	}
    
    	return 0;
    }
    
    



    2、dijkstra

    /*
     * NEFU_208.cpp
     *
     *  Created on: 2014年5月27日
     *      Author: pc
     */
    
    
    #include <iostream>
    #include <cstdio>
    
    using namespace std;
    
    const int maxn = 105;
    const int inf = 10005;
    
    int n;
    
    int s[maxn];
    int dis[maxn];
    int map[maxn][maxn];
    
    int target;
    
    int dijkstra(int v){
    
    	int i;
    	for(i = 0 ; i < n ; ++i){
    		s[i] = 0;
    		dis[i] = map[v][i];
    	}
    
    	for(i = 0 ; i < n-1 ; ++i){//这里的意思实际上是将剩下的n-1个点全部放到S集合中
    		int min = inf;
    		int pos;
    
    		int j;
    		for(j = 0 ; j < n ; ++j){//寻找最短路径点
    			if(!s[j] && dis[j] < min){
    				min = dis[j];
    				pos = j;
    			}
    		}
    
    		s[pos] = 1;
    
    		for(j = 0 ; j < n ; ++j){
    			if(!s[j] && dis[j] > dis[pos] + map[pos][j]){
    				dis[j] = dis[pos] + map[pos][j];
    			}
    		}
    	}
    
    	return dis[target];
    }
    
    
    int main(){
    	int m;
    	while(scanf("%d%d",&n,&m)!=EOF){
    		int i;
    		int j;
    		for(i = 0 ; i < n ; ++i){
    			for(j = 0 ; j < n ; ++j){
    				if(i == j){
    					map[i][j] = 0;
    				}else{
    					map[i][j] = inf;
    				}
    			}
    		}
    
    		for(i = 1 ; i <= m ; ++i){
    			int a,b,c;
    			scanf("%d%d%d",&a,&b,&c);
    
    			if(map[a][b] > c){
    				map[a][b] = map[b][a] = c;
    			}
    		}
    
    		int start,end;
    		scanf("%d%d",&start,&end);
    
    		target = end;
    		int result = dijkstra(start);
    
    		if(result == inf){
    			printf("-1
    ");
    		}else{
    			printf("%d
    ",result);
    		}
    	}
    
    	return 0;
    }
    



    3、spfa算法

    /*
     * NEFU208.cpp
     *
     *  Created on: 2015年3月26日
     *      Author: Administrator
     */
    #include <iostream>
    #include <cstring>
    #include <queue>
    using namespace std;
    
    const int N = 105;
    const int INF = 99999999;
    
    int map[N][N], dist[N];
    bool visit[N];
    int n, m;
    
    void init() {//初始化
    	int i, j;
    	for (i = 0; i < N; i++) {
    		for (j = 0; j < N; j++) {
    			if (i == j) {
    				map[i][j] = 0;
    			} else {
    				map[i][j] = map[j][i] = INF;
    			}
    		}
    	}
    }
    
    /**
     * SPFA算法.
     * 使用spfa算法来求单元最短路径
     * 參数说明:
     * start:起点
     */
    void spfa(int start) {
    	queue<int> Q;
    
    	int i, now;
    	memset(visit, false, sizeof(visit));
    	for (i = 0; i < n; i++){
    		dist[i] = INF;
    	}
    
    	dist[start] = 0;
    	Q.push(start);
    	visit[start] = true;
    	while (!Q.empty()) {
    		now = Q.front();
    		Q.pop();
    		visit[now] = false;
    		for (i = 0; i < n; i++) {//须要注意一下的是,这道题顶点的序号是从0開始的,到n-1.之前的题目都是1~n
    			if (dist[i] > dist[now] + map[now][i]) {
    				dist[i] = dist[now] + map[now][i];
    				if (visit[i] == 0) {
    					Q.push(i);
    					visit[i] = true;
    				}
    			}
    		}
    	}
    }
    
    
    int main(){
    	while(scanf("%d%d",&n,&m)!=EOF){
    		init();
    
    		while(m--){
    			int a,b,c;
    			scanf("%d%d%d",&a,&b,&c);
    
    
    			if(map[a][b] > c){
    				map[a][b] = map[b][a] = c;
    			}
    		}
    
    		int start,end;
    		scanf("%d%d",&start,&end);
    
    
    		spfa(start);
    
    		if(dist[end] == INF){
    			printf("-1
    ");
    		}else{
    			printf("%d
    ",dist[end]);
    		}
    	}
    
    	return 0;
    }
    
    
    





     

       







  • 相关阅读:
    C语言II|博客园04
    C语言!!!博客作业03
    C语言II博客作业02
    C语言II—作业01
    deppin系统安装electron步骤及问题
    deppin20.2 频繁卡死问题已解决
    那些实用的Nginx规则
    hibernate4升级5带来的一些参数变化
    java 后台获取文件上传的真实扩展名
    eclipse 卡顿的优化办法
  • 原文地址:https://www.cnblogs.com/yangykaifa/p/6803593.html
Copyright © 2020-2023  润新知