• 有限差分法


    有限差分法

      有限差分法是一种求解偏微分(或者常微分)方程或方程组定解问题的数值解的方法,简称差分法。  (定解问题:满足定解条件(初值条件,边界条件)的问题的解)

      数学意义上的微分方程的求解不同于物理意义上的微分方程的求解,物理微分方程的求解有时间和空间上的约束条件。

      约束可细分为:

        (1)在空间域的边界,内部空间上满足的定解条件。

        (2)如果问题与时间相关,初始时刻还要满足定解条件。

        (3)或者以上两者同时满足。

    有限差分法求解思路

      首先利用网格将求解域进行划分(空间离散),然后利用差分方程(显示或隐式,前差,后差,中心差)替换偏微分方程进行方程的替换,如果方程与时间有关,还需要将时间进行离散,得到关于网格点的未知函数的线性代数方程。

    空间离散

      一般用二维结构化网格为主将空间划分为一个个大小相等的网格,x和y方向上的网格增量相等,用△h代替。

               

  • 相关阅读:
    Javascript 面向对象编程
    搜狗2013面试题——求页面中所有单词的个数
    jQuery的ready函数需要注意的细节
    js冒泡排序
    jQuery基本框架解析
    数据结构与算法汇总
    唯美的图片网站
    JavaScript中的setInterval用法
    DOCTYPE
    js实现快速排列
  • 原文地址:https://www.cnblogs.com/yangwu-183/p/9970223.html
Copyright © 2020-2023  润新知