• 利用python深度学习算法来绘图



    可以画画啊!可以画画啊!可以画画啊! 对,有趣的事情需要讲三遍。 事情是这样的,通过python的深度学习算法包去训练计算机模仿世界名画的风格,然后应用到另一幅画中,不多说直接上图!


    这个是世界名画”毕加索的自画像“(我也不懂什么是世界名画,但是我会google呀哈哈),以这张图片为模板,让计算机去学习这张图片的风格(至于怎么学习请参照这篇国外大牛的论文)应用到自己的这张图片上。

    结果就变成下面这个样子了


    咦,吓死宝宝了,不过好玩的东西当然要身先士卒啦! 接着由于距离开学也越来越近了,为了给广大新生营造一个良好的校园,噗!为了美化校园在新生心目中的形象学长真的不是有意要欺骗你们的。特意制作了下面的《梵高笔下的东华理工大学》,是不是没有听说过这个大学,的确她就是一个普通的二本学校不过这都不是重点。 左边的图片是梵高的《星空》作为模板,中间的图片是待转化的图片,右边的图片是结果

    这是我们学校的内“湖”(池塘)

    校园里的樱花广场(个人觉得这是我校最浪漫的地方了)

    不多说,学校图书馆

    “池塘”边的柳树

    学校东大门

    学校测绘楼

    学校地学楼

    为了便于观看,附上生成后的大图:








    别看才区区七张图片,可是这让计算机运行了好长的时间,期间电脑死机两次!

    好了广告打完了,下面是福利时间

    在本地用keras搭建风格转移平台

    1.相关依赖库的安装

    # 命令行安装keras、h5py、tensorflow
    pip3 install keras
    pip3 install h5py
    pip3 install tensorflow
    

    如果tensorflowan命令行安装失败,可以在这里下载whl包Python Extension Packages for Windows(进入网址后ctrl+F输入tensorflow可以快速搜索)

    2.配置运行环境

    下载VGG16模型 放入如下目录当中

    3.代码编写

    from __future__ import print_function
    from keras.preprocessing.image import load_img, img_to_array
    from scipy.misc import imsave
    import numpy as np
    from scipy.optimize import fmin_l_bfgs_b
    import time
    import argparse
    
    from keras.applications import vgg16
    from keras import backend as K
    
    parser = argparse.ArgumentParser(description='Neural style transfer with Keras.')
    parser.add_argument('base_image_path', metavar='base', type=str,
                        help='Path to the image to transform.')
    parser.add_argument('style_reference_image_path', metavar='ref', type=str,
                        help='Path to the style reference image.')
    parser.add_argument('result_prefix', metavar='res_prefix', type=str,
                        help='Prefix for the saved results.')
    parser.add_argument('--iter', type=int, default=10, required=False,
                        help='Number of iterations to run.')
    parser.add_argument('--content_weight', type=float, default=0.025, required=False,
                        help='Content weight.')
    parser.add_argument('--style_weight', type=float, default=1.0, required=False,
                        help='Style weight.')
    parser.add_argument('--tv_weight', type=float, default=1.0, required=False,
                        help='Total Variation weight.')
    
    args = parser.parse_args()
    base_image_path = args.base_image_path
    style_reference_image_path = args.style_reference_image_path
    result_prefix = args.result_prefix
    iterations = args.iter
    
    # these are the weights of the different loss components
    total_variation_weight = args.tv_weight
    style_weight = args.style_weight
    content_weight = args.content_weight
    
    # dimensions of the generated picture.
    width, height = load_img(base_image_path).size
    img_nrows = 400
    img_ncols = int(width * img_nrows / height)
    
    # util function to open, resize and format pictures into appropriate tensors
    
    
    def preprocess_image(image_path):
        img = load_img(image_path, target_size=(img_nrows, img_ncols))
        img = img_to_array(img)
        img = np.expand_dims(img, axis=0)
        img = vgg16.preprocess_input(img)
        return img
    
    # util function to convert a tensor into a valid image
    
    
    def deprocess_image(x):
        if K.image_data_format() == 'channels_first':
            x = x.reshape((3, img_nrows, img_ncols))
            x = x.transpose((1, 2, 0))
        else:
            x = x.reshape((img_nrows, img_ncols, 3))
        # Remove zero-center by mean pixel
        x[:, :, 0] += 103.939
        x[:, :, 1] += 116.779
        x[:, :, 2] += 123.68
        # 'BGR'->'RGB'
        x = x[:, :, ::-1]
        x = np.clip(x, 0, 255).astype('uint8')
        return x
    
    # get tensor representations of our images
    base_image = K.variable(preprocess_image(base_image_path))
    style_reference_image = K.variable(preprocess_image(style_reference_image_path))
    
    # this will contain our generated image
    if K.image_data_format() == 'channels_first':
        combination_image = K.placeholder((1, 3, img_nrows, img_ncols))
    else:
        combination_image = K.placeholder((1, img_nrows, img_ncols, 3))
    
    # combine the 3 images into a single Keras tensor
    input_tensor = K.concatenate([base_image,
                                  style_reference_image,
                                  combination_image], axis=0)
    
    # build the VGG16 network with our 3 images as input
    # the model will be loaded with pre-trained ImageNet weights
    model = vgg16.VGG16(input_tensor=input_tensor,
                        weights='imagenet', include_top=False)
    print('Model loaded.')
    
    # get the symbolic outputs of each "key" layer (we gave them unique names).
    outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
    
    # compute the neural style loss
    # first we need to define 4 util functions
    
    # the gram matrix of an image tensor (feature-wise outer product)
    
    
    def gram_matrix(x):
        assert K.ndim(x) == 3
        if K.image_data_format() == 'channels_first':
            features = K.batch_flatten(x)
        else:
            features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
        gram = K.dot(features, K.transpose(features))
        return gram
    
    # the "style loss" is designed to maintain
    # the style of the reference image in the generated image.
    # It is based on the gram matrices (which capture style) of
    # feature maps from the style reference image
    # and from the generated image
    
    
    def style_loss(style, combination):
        assert K.ndim(style) == 3
        assert K.ndim(combination) == 3
        S = gram_matrix(style)
        C = gram_matrix(combination)
        channels = 3
        size = img_nrows * img_ncols
        return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))
    
    # an auxiliary loss function
    # designed to maintain the "content" of the
    # base image in the generated image
    
    
    def content_loss(base, combination):
        return K.sum(K.square(combination - base))
    
    # the 3rd loss function, total variation loss,
    # designed to keep the generated image locally coherent
    
    
    def total_variation_loss(x):
        assert K.ndim(x) == 4
        if K.image_data_format() == 'channels_first':
            a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1])
            b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:])
        else:
            a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :])
            b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :])
        return K.sum(K.pow(a + b, 1.25))
    
    # combine these loss functions into a single scalar
    loss = K.variable(0.)
    layer_features = outputs_dict['block4_conv2']
    base_image_features = layer_features[0, :, :, :]
    combination_features = layer_features[2, :, :, :]
    loss += content_weight * content_loss(base_image_features,
                                          combination_features)
    
    feature_layers = ['block1_conv1', 'block2_conv1',
                      'block3_conv1', 'block4_conv1',
                      'block5_conv1']
    for layer_name in feature_layers:
        layer_features = outputs_dict[layer_name]
        style_reference_features = layer_features[1, :, :, :]
        combination_features = layer_features[2, :, :, :]
        sl = style_loss(style_reference_features, combination_features)
        loss += (style_weight / len(feature_layers)) * sl
    loss += total_variation_weight * total_variation_loss(combination_image)
    
    # get the gradients of the generated image wrt the loss
    grads = K.gradients(loss, combination_image)
    
    outputs = [loss]
    if isinstance(grads, (list, tuple)):
        outputs += grads
    else:
        outputs.append(grads)
    
    f_outputs = K.function([combination_image], outputs)
    
    
    def eval_loss_and_grads(x):
        if K.image_data_format() == 'channels_first':
            x = x.reshape((1, 3, img_nrows, img_ncols))
        else:
            x = x.reshape((1, img_nrows, img_ncols, 3))
        outs = f_outputs([x])
        loss_value = outs[0]
        if len(outs[1:]) == 1:
            grad_values = outs[1].flatten().astype('float64')
        else:
            grad_values = np.array(outs[1:]).flatten().astype('float64')
        return loss_value, grad_values
    
    # this Evaluator class makes it possible
    # to compute loss and gradients in one pass
    # while retrieving them via two separate functions,
    # "loss" and "grads". This is done because scipy.optimize
    # requires separate functions for loss and gradients,
    # but computing them separately would be inefficient.
    
    
    class Evaluator(object):
    
        def __init__(self):
            self.loss_value = None
            self.grads_values = None
    
        def loss(self, x):
            assert self.loss_value is None
            loss_value, grad_values = eval_loss_and_grads(x)
            self.loss_value = loss_value
            self.grad_values = grad_values
            return self.loss_value
    
        def grads(self, x):
            assert self.loss_value is not None
            grad_values = np.copy(self.grad_values)
            self.loss_value = None
            self.grad_values = None
            return grad_values
    
    evaluator = Evaluator()
    
    # run scipy-based optimization (L-BFGS) over the pixels of the generated image
    # so as to minimize the neural style loss
    if K.image_data_format() == 'channels_first':
        x = np.random.uniform(0, 255, (1, 3, img_nrows, img_ncols)) - 128.
    else:
        x = np.random.uniform(0, 255, (1, img_nrows, img_ncols, 3)) - 128.
    
    for i in range(iterations):
        print('Start of iteration', i)
        start_time = time.time()
        x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(),
                                         fprime=evaluator.grads, maxfun=20)
        print('Current loss value:', min_val)
        # save current generated image
        img = deprocess_image(x.copy())
        fname = result_prefix + '_at_iteration_%d.png' % i
        imsave(fname, img)
        end_time = time.time()
        print('Image saved as', fname)
    print('Iteration %d completed in %ds' % (i, end_time - start_time))
    

    复制上述代码保存为neural_style_transfer.py(随便命名)

    4.运行

    新建一个空文件夹,把上一步骤的文件neural_style_transfer.py放入这个空文件夹中。然后把相应的模板图片,待转化图片放入该文件当中。

    python neural_style_transfer.py   你的待转化图片路径    模板图片路径   保存的生产图片路径加名称注意不需要有.jpg等后缀python neural_style_transfer.py './me.jpg' './starry_night.jpg' './me_t'
    

    迭代结果截图:

    迭代过程对比


    其它库实现风格转化

    基于python深度学习库DeepPy的实现:GitHub - andersbll/neural_artistic_style: Neural Artistic Style in Python

    基于python深度学习库TensorFlow的实现:GitHub - anishathalye/neural-style: Neural style in TensorFlow!

    基于python深度学习库Caffe的实现:

  • 相关阅读:
    BZOJ 1444 有趣的游戏(AC自动机+矩阵快速幂)
    BZOJ 1190 梦幻岛宝珠(分组01背包)
    BZOJ 1562 变换序列(二分图匹配)
    BZOJ 1483 梦幻布丁(链表+启发式合并)
    BZOJ 1222 产品加工(DP)
    java GUI编程一
    java 网络编程
    java 异常
    java 线程二
    java 线程一
  • 原文地址:https://www.cnblogs.com/yangshunde/p/7739896.html
Copyright © 2020-2023  润新知